Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isspthonpth Structured version   Visualization version   GIF version

Theorem isspthonpth 26114
 Description: Properties of a pair of functions to be a simple path between two given vertices(in an undirected graph). (Contributed by Alexander van der Vekens, 9-Mar-2018.)
Assertion
Ref Expression
isspthonpth (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))

Proof of Theorem isspthonpth
StepHypRef Expression
1 isspthon 26113 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝑉 SPaths 𝐸)𝑃)))
2 iswlkon 26062 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
32anbi1d 737 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → ((𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝑉 SPaths 𝐸)𝑃) ↔ ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ 𝐹(𝑉 SPaths 𝐸)𝑃)))
4 simpl 472 . . . . . 6 ((𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → 𝐹(𝑉 SPaths 𝐸)𝑃)
5 simpr2 1061 . . . . . 6 ((𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝑃‘0) = 𝐴)
6 simpr3 1062 . . . . . 6 ((𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝑃‘(#‘𝐹)) = 𝐵)
74, 5, 63jca 1235 . . . . 5 ((𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
87ancoms 468 . . . 4 (((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ 𝐹(𝑉 SPaths 𝐸)𝑃) → (𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
9 spthispth 26103 . . . . . . 7 (𝐹(𝑉 SPaths 𝐸)𝑃𝐹(𝑉 Paths 𝐸)𝑃)
10 pthistrl 26102 . . . . . . 7 (𝐹(𝑉 Paths 𝐸)𝑃𝐹(𝑉 Trails 𝐸)𝑃)
11 trliswlk 26069 . . . . . . 7 (𝐹(𝑉 Trails 𝐸)𝑃𝐹(𝑉 Walks 𝐸)𝑃)
129, 10, 113syl 18 . . . . . 6 (𝐹(𝑉 SPaths 𝐸)𝑃𝐹(𝑉 Walks 𝐸)𝑃)
13123anim1i 1241 . . . . 5 ((𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
14 simp1 1054 . . . . 5 ((𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → 𝐹(𝑉 SPaths 𝐸)𝑃)
1513, 14jca 553 . . . 4 ((𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ 𝐹(𝑉 SPaths 𝐸)𝑃))
168, 15impbii 198 . . 3 (((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ 𝐹(𝑉 SPaths 𝐸)𝑃) ↔ (𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵))
173, 16syl6bb 275 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → ((𝐹(𝐴(𝑉 WalkOn 𝐸)𝐵)𝑃𝐹(𝑉 SPaths 𝐸)𝑃) ↔ (𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
181, 17bitrd 267 1 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍) ∧ (𝐴𝑉𝐵𝑉)) → (𝐹(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑃 ↔ (𝐹(𝑉 SPaths 𝐸)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  0cc0 9815  #chash 12979   Walks cwalk 26026   Trails ctrail 26027   Paths cpath 26028   SPaths cspath 26029   WalkOn cwlkon 26030   SPathOn cspthon 26033 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-trail 26037  df-pth 26038  df-spth 26039  df-wlkon 26042  df-spthon 26045 This theorem is referenced by:  el2spthonot0  26398
 Copyright terms: Public domain W3C validator