Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isslw Structured version   Visualization version   GIF version

Theorem isslw 17846
 Description: The property of being a Sylow subgroup. A Sylow 𝑃-subgroup is a 𝑃-group which has no proper supersets that are also 𝑃-groups. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
isslw (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐻   𝑃,𝑘

Proof of Theorem isslw
Dummy variables 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-slw 17774 . . 3 pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)})
21elmpt2cl 6774 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
3 simp1 1054 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝑃 ∈ ℙ)
4 subgrcl 17422 . . . 4 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
543ad2ant2 1076 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → 𝐺 ∈ Grp)
63, 5jca 553 . 2 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) → (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp))
7 simpr 476 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑔 = 𝐺)
87fveq2d 6107 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (SubGrp‘𝑔) = (SubGrp‘𝐺))
9 simpl 472 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → 𝑝 = 𝑃)
107oveq1d 6564 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑔s 𝑘) = (𝐺s 𝑘))
119, 10breq12d 4596 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑔 = 𝐺) → (𝑝 pGrp (𝑔s 𝑘) ↔ 𝑃 pGrp (𝐺s 𝑘)))
1211anbi2d 736 . . . . . . . . . 10 ((𝑝 = 𝑃𝑔 = 𝐺) → ((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ (𝑘𝑃 pGrp (𝐺s 𝑘))))
1312bibi1d 332 . . . . . . . . 9 ((𝑝 = 𝑃𝑔 = 𝐺) → (((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
148, 13raleqbidv 3129 . . . . . . . 8 ((𝑝 = 𝑃𝑔 = 𝐺) → (∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)))
158, 14rabeqbidv 3168 . . . . . . 7 ((𝑝 = 𝑃𝑔 = 𝐺) → { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)} = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
16 fvex 6113 . . . . . . . 8 (SubGrp‘𝐺) ∈ V
1716rabex 4740 . . . . . . 7 { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ∈ V
1815, 1, 17ovmpt2a 6689 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝑃 pSyl 𝐺) = { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)})
1918eleq2d 2673 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ 𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)}))
20 sseq1 3589 . . . . . . . . 9 ( = 𝐻 → (𝑘𝐻𝑘))
2120anbi1d 737 . . . . . . . 8 ( = 𝐻 → ((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
22 eqeq1 2614 . . . . . . . 8 ( = 𝐻 → ( = 𝑘𝐻 = 𝑘))
2321, 22bibi12d 334 . . . . . . 7 ( = 𝐻 → (((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2423ralbidv 2969 . . . . . 6 ( = 𝐻 → (∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘) ↔ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2524elrab 3331 . . . . 5 (𝐻 ∈ { ∈ (SubGrp‘𝐺) ∣ ∀𝑘 ∈ (SubGrp‘𝐺)((𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ = 𝑘)} ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
2619, 25syl6bb 275 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
27 simpl 472 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → 𝑃 ∈ ℙ)
2827biantrurd 528 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → ((𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
2926, 28bitrd 267 . . 3 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))))
30 3anass 1035 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)) ↔ (𝑃 ∈ ℙ ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
3129, 30syl6bbr 277 . 2 ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))))
322, 6, 31pm5.21nii 367 1 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℙcprime 15223   ↾s cress 15696  Grpcgrp 17245  SubGrpcsubg 17411   pGrp cpgp 17769   pSyl cslw 17770 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-subg 17414  df-slw 17774 This theorem is referenced by:  slwprm  17847  slwsubg  17848  slwispgp  17849  pgpssslw  17852  subgslw  17854  fislw  17863
 Copyright terms: Public domain W3C validator