Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isrusgrac | Structured version Visualization version GIF version |
Description: The property of being a k-regular undirected simple graph represented by a class. (Contributed by AV, 3-Jan-2020.) |
Ref | Expression |
---|---|
isrusgrac | ⊢ ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGrph 𝐾 ↔ (𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st ‘𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrusgusrgcl 26460 | . 2 ⊢ ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGrph 𝐾 ↔ (𝐺 ∈ USGrph ∧ 𝐺 RegGrph 𝐾))) | |
2 | isrgrac 26461 | . . . 4 ⊢ ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾 ∈ 𝑍) → (𝐺 RegGrph 𝐾 ↔ (𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st ‘𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾))) | |
3 | 2 | anbi2d 736 | . . 3 ⊢ ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾 ∈ 𝑍) → ((𝐺 ∈ USGrph ∧ 𝐺 RegGrph 𝐾) ↔ (𝐺 ∈ USGrph ∧ (𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st ‘𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾)))) |
4 | 3anass 1035 | . . 3 ⊢ ((𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st ‘𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾) ↔ (𝐺 ∈ USGrph ∧ (𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st ‘𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾))) | |
5 | 3, 4 | syl6bbr 277 | . 2 ⊢ ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾 ∈ 𝑍) → ((𝐺 ∈ USGrph ∧ 𝐺 RegGrph 𝐾) ↔ (𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st ‘𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾))) |
6 | 1, 5 | bitrd 267 | 1 ⊢ ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGrph 𝐾 ↔ (𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st ‘𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 class class class wbr 4583 × cxp 5036 ‘cfv 5804 1st c1st 7057 ℕ0cn0 11169 USGrph cusg 25859 VDeg cvdg 26420 RegGrph crgra 26449 RegUSGrph crusgra 26450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-1st 7059 df-2nd 7060 df-rgra 26451 df-rusgra 26452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |