MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrusgrac Structured version   Visualization version   GIF version

Theorem isrusgrac 26462
Description: The property of being a k-regular undirected simple graph represented by a class. (Contributed by AV, 3-Jan-2020.)
Assertion
Ref Expression
isrusgrac ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾𝑍) → (𝐺 RegUSGrph 𝐾 ↔ (𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾)))
Distinct variable groups:   𝐺,𝑝   𝐾,𝑝
Allowed substitution hints:   𝑋(𝑝)   𝑌(𝑝)   𝑍(𝑝)

Proof of Theorem isrusgrac
StepHypRef Expression
1 isrusgusrgcl 26460 . 2 ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾𝑍) → (𝐺 RegUSGrph 𝐾 ↔ (𝐺 ∈ USGrph ∧ 𝐺 RegGrph 𝐾)))
2 isrgrac 26461 . . . 4 ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾𝑍) → (𝐺 RegGrph 𝐾 ↔ (𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾)))
32anbi2d 736 . . 3 ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾𝑍) → ((𝐺 ∈ USGrph ∧ 𝐺 RegGrph 𝐾) ↔ (𝐺 ∈ USGrph ∧ (𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾))))
4 3anass 1035 . . 3 ((𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾) ↔ (𝐺 ∈ USGrph ∧ (𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾)))
53, 4syl6bbr 277 . 2 ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾𝑍) → ((𝐺 ∈ USGrph ∧ 𝐺 RegGrph 𝐾) ↔ (𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾)))
61, 5bitrd 267 1 ((𝐺 ∈ (𝑋 × 𝑌) ∧ 𝐾𝑍) → (𝐺 RegUSGrph 𝐾 ↔ (𝐺 ∈ USGrph ∧ 𝐾 ∈ ℕ0 ∧ ∀𝑝 ∈ (1st𝐺)(( VDeg ‘𝐺)‘𝑝) = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583   × cxp 5036  cfv 5804  1st c1st 7057  0cn0 11169   USGrph cusg 25859   VDeg cvdg 26420   RegGrph crgra 26449   RegUSGrph crusgra 26450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-1st 7059  df-2nd 7060  df-rgra 26451  df-rusgra 26452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator