Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrusgr | Structured version Visualization version GIF version |
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2676 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph )) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph )) |
3 | breq12 4588 | . . . 4 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 RegGraph 𝑘 ↔ 𝐺 RegGraph 𝐾)) | |
4 | 2, 3 | anbi12d 743 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → ((𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘) ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
5 | df-rusgr 40758 | . . 3 ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} | |
6 | 4, 5 | brabga 4914 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
7 | biidd 251 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾) ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) | |
8 | 6, 7 | bitrd 267 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 USGraph cusgr 40379 RegGraph crgr 40755 RegUSGraph crusgr 40756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-rusgr 40758 |
This theorem is referenced by: rusgrprop 40762 isrusgr0 40766 usgr0edg0rusgr 40775 0vtxrusgr 40777 frgrregorufrg 41505 |
Copyright terms: Public domain | W3C validator |