Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isrhm2d | Structured version Visualization version GIF version |
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrhmd.o | ⊢ 1 = (1r‘𝑅) |
isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
isrhmd.t | ⊢ · = (.r‘𝑅) |
isrhmd.u | ⊢ × = (.r‘𝑆) |
isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrhm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Ref | Expression |
---|---|
isrhm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | isrhmd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
3 | 1, 2 | jca 553 | . 2 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) |
4 | isrhm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
5 | eqid 2610 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
6 | 5 | ringmgp 18376 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
8 | eqid 2610 | . . . . . . 7 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
9 | 8 | ringmgp 18376 | . . . . . 6 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
10 | 2, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
11 | 7, 10 | jca 553 | . . . 4 ⊢ (𝜑 → ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd)) |
12 | isrhmd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
13 | eqid 2610 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
14 | 12, 13 | ghmf 17487 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
15 | 4, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
16 | isrhmd.ht | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
17 | 16 | ralrimivva 2954 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
18 | isrhmd.ho | . . . . . 6 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
19 | isrhmd.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
20 | 5, 19 | ringidval 18326 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
21 | 20 | fveq2i 6106 | . . . . . 6 ⊢ (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))) |
22 | isrhmd.n | . . . . . . 7 ⊢ 𝑁 = (1r‘𝑆) | |
23 | 8, 22 | ringidval 18326 | . . . . . 6 ⊢ 𝑁 = (0g‘(mulGrp‘𝑆)) |
24 | 18, 21, 23 | 3eqtr3g 2667 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
25 | 15, 17, 24 | 3jca 1235 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))) |
26 | 5, 12 | mgpbas 18318 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
27 | 8, 13 | mgpbas 18318 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
28 | isrhmd.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
29 | 5, 28 | mgpplusg 18316 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
30 | isrhmd.u | . . . . . 6 ⊢ × = (.r‘𝑆) | |
31 | 8, 30 | mgpplusg 18316 | . . . . 5 ⊢ × = (+g‘(mulGrp‘𝑆)) |
32 | eqid 2610 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
33 | eqid 2610 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
34 | 26, 27, 29, 31, 32, 33 | ismhm 17160 | . . . 4 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))) |
35 | 11, 25, 34 | sylanbrc 695 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
36 | 4, 35 | jca 553 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
37 | 5, 8 | isrhm 18544 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
38 | 3, 36, 37 | sylanbrc 695 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 .rcmulr 15769 0gc0g 15923 Mndcmnd 17117 MndHom cmhm 17156 GrpHom cghm 17480 mulGrpcmgp 18312 1rcur 18324 Ringcrg 18370 RingHom crh 18535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-0g 15925 df-mhm 17158 df-ghm 17481 df-mgp 18313 df-ur 18325 df-ring 18372 df-rnghom 18538 |
This theorem is referenced by: isrhmd 18552 qusrhm 19058 asclrhm 19163 mulgrhm 19665 rhmopp 29150 |
Copyright terms: Public domain | W3C validator |