MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrhm Structured version   Visualization version   GIF version

Theorem isrhm 18544
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
isrhm.m 𝑀 = (mulGrp‘𝑅)
isrhm.n 𝑁 = (mulGrp‘𝑆)
Assertion
Ref Expression
isrhm (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))

Proof of Theorem isrhm
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 18540 . . 3 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))))
21elmpt2cl 6774 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring))
3 oveq12 6558 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑟 GrpHom 𝑠) = (𝑅 GrpHom 𝑆))
4 fveq2 6103 . . . . . . 7 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
5 fveq2 6103 . . . . . . 7 (𝑠 = 𝑆 → (mulGrp‘𝑠) = (mulGrp‘𝑆))
64, 5oveqan12d 6568 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
73, 6ineq12d 3777 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠))) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
8 ovex 6577 . . . . . 6 (𝑅 GrpHom 𝑆) ∈ V
98inex1 4727 . . . . 5 ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ∈ V
107, 1, 9ovmpt2a 6689 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
1110eleq2d 2673 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ 𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))))
12 elin 3758 . . . 4 (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
13 isrhm.m . . . . . . . 8 𝑀 = (mulGrp‘𝑅)
14 isrhm.n . . . . . . . 8 𝑁 = (mulGrp‘𝑆)
1513, 14oveq12i 6561 . . . . . . 7 (𝑀 MndHom 𝑁) = ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))
1615eqcomi 2619 . . . . . 6 ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) = (𝑀 MndHom 𝑁)
1716eleq2i 2680 . . . . 5 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ 𝐹 ∈ (𝑀 MndHom 𝑁))
1817anbi2i 726 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))
1912, 18bitri 263 . . 3 (𝐹 ∈ ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))
2011, 19syl6bb 275 . 2 ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))
212, 20biadan2 672 1 (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  cin 3539  cfv 5804  (class class class)co 6549   MndHom cmhm 17156   GrpHom cghm 17480  mulGrpcmgp 18312  Ringcrg 18370   RingHom crh 18535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mhm 17158  df-ghm 17481  df-mgp 18313  df-ur 18325  df-ring 18372  df-rnghom 18538
This theorem is referenced by:  rhmmhm  18545  rhmghm  18548  isrhm2d  18551  idrhm  18554  rhmf1o  18555  rhmco  18560  pwsco1rhm  18561  pwsco2rhm  18562  brric2  18568  resrhm  18632  pwsdiagrhm  18636  rhmpropd  18638  mat1rhm  20110  scmatrhm  20160  mat2pmatrhm  20358  m2cpmrhm  20370  pm2mprhm  20445  c0rhm  41702  rhmisrnghm  41710
  Copyright terms: Public domain W3C validator