Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg2 Structured version   Visualization version   GIF version

Theorem isreg2 20991
 Description: A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
Distinct variable groups:   𝑜,𝑐,𝑝,𝑥,𝐽   𝑋,𝑐,𝑜,𝑝,𝑥

Proof of Theorem isreg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1r 1079 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝐽 ∈ Reg)
2 simp2l 1080 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑐 ∈ (Clsd‘𝐽))
3 simp2r 1081 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑥𝑋)
4 simp1l 1078 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝐽 ∈ (TopOn‘𝑋))
5 toponuni 20542 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
64, 5syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑋 = 𝐽)
73, 6eleqtrd 2690 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → 𝑥 𝐽)
8 simp3 1056 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → ¬ 𝑥𝑐)
9 eqid 2610 . . . . . 6 𝐽 = 𝐽
109regsep2 20990 . . . . 5 ((𝐽 ∈ Reg ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥 𝐽 ∧ ¬ 𝑥𝑐)) → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))
111, 2, 7, 8, 10syl13anc 1320 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋) ∧ ¬ 𝑥𝑐) → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))
12113expia 1259 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑥𝑋)) → (¬ 𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
1312ralrimivva 2954 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
14 topontop 20541 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1514adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ Top)
165adantr 480 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑋 = 𝐽)
1716difeq1d 3689 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (𝑋𝑦) = ( 𝐽𝑦))
189opncld 20647 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
1914, 18sylan 487 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
2017, 19eqeltrd 2688 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
21 eleq2 2677 . . . . . . . . . . . 12 (𝑐 = (𝑋𝑦) → (𝑥𝑐𝑥 ∈ (𝑋𝑦)))
2221notbid 307 . . . . . . . . . . 11 (𝑐 = (𝑋𝑦) → (¬ 𝑥𝑐 ↔ ¬ 𝑥 ∈ (𝑋𝑦)))
23 eldif 3550 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑋𝑦) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑦))
2423baibr 943 . . . . . . . . . . . 12 (𝑥𝑋 → (¬ 𝑥𝑦𝑥 ∈ (𝑋𝑦)))
2524con1bid 344 . . . . . . . . . . 11 (𝑥𝑋 → (¬ 𝑥 ∈ (𝑋𝑦) ↔ 𝑥𝑦))
2622, 25sylan9bb 732 . . . . . . . . . 10 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → (¬ 𝑥𝑐𝑥𝑦))
27 simpl 472 . . . . . . . . . . . . 13 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → 𝑐 = (𝑋𝑦))
2827sseq1d 3595 . . . . . . . . . . . 12 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → (𝑐𝑜 ↔ (𝑋𝑦) ⊆ 𝑜))
29283anbi1d 1395 . . . . . . . . . . 11 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → ((𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) ↔ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
30292rexbidv 3039 . . . . . . . . . 10 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → (∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) ↔ ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
3126, 30imbi12d 333 . . . . . . . . 9 ((𝑐 = (𝑋𝑦) ∧ 𝑥𝑋) → ((¬ 𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) ↔ (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
3231ralbidva 2968 . . . . . . . 8 (𝑐 = (𝑋𝑦) → (∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) ↔ ∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
3332rspcv 3278 . . . . . . 7 ((𝑋𝑦) ∈ (Clsd‘𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
3420, 33syl 17 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
35 ralcom3 3084 . . . . . . 7 (∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) ↔ ∀𝑥𝑦 (𝑥𝑋 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)))
36 toponss 20544 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → 𝑦𝑋)
3736sselda 3568 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) → 𝑥𝑋)
38 simprr2 1103 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑥𝑝)
395ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑋 = 𝐽)
4039difeq1d 3689 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑜) = ( 𝐽𝑜))
4114ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ Top)
42 simprll 798 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑜𝐽)
439opncld 20647 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝑜𝐽) → ( 𝐽𝑜) ∈ (Clsd‘𝐽))
4441, 42, 43syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ( 𝐽𝑜) ∈ (Clsd‘𝐽))
4540, 44eqeltrd 2688 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑜) ∈ (Clsd‘𝐽))
46 incom 3767 . . . . . . . . . . . . . . . . . 18 (𝑝𝑜) = (𝑜𝑝)
47 simprr3 1104 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑜𝑝) = ∅)
4846, 47syl5eq 2656 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑝𝑜) = ∅)
49 simplll 794 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ (TopOn‘𝑋))
50 simprlr 799 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑝𝐽)
51 toponss 20544 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑝𝐽) → 𝑝𝑋)
5249, 50, 51syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑝𝑋)
53 reldisj 3972 . . . . . . . . . . . . . . . . . 18 (𝑝𝑋 → ((𝑝𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋𝑜)))
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ((𝑝𝑜) = ∅ ↔ 𝑝 ⊆ (𝑋𝑜)))
5548, 54mpbid 221 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝑝 ⊆ (𝑋𝑜))
569clsss2 20686 . . . . . . . . . . . . . . . 16 (((𝑋𝑜) ∈ (Clsd‘𝐽) ∧ 𝑝 ⊆ (𝑋𝑜)) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋𝑜))
5745, 55, 56syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ (𝑋𝑜))
58 simprr1 1102 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑦) ⊆ 𝑜)
59 difcom 4005 . . . . . . . . . . . . . . . 16 ((𝑋𝑦) ⊆ 𝑜 ↔ (𝑋𝑜) ⊆ 𝑦)
6058, 59sylib 207 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑋𝑜) ⊆ 𝑦)
6157, 60sstrd 3578 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ((cls‘𝐽)‘𝑝) ⊆ 𝑦)
6238, 61jca 553 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ ((𝑜𝐽𝑝𝐽) ∧ ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))
6362expr 641 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ (𝑜𝐽𝑝𝐽)) → (((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6463anassrs 678 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ 𝑜𝐽) ∧ 𝑝𝐽) → (((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6564reximdva 3000 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) ∧ 𝑜𝐽) → (∃𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → ∃𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6665rexlimdva 3013 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) → (∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅) → ∃𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6737, 66embantd 57 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) ∧ 𝑥𝑦) → ((𝑥𝑋 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∃𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6867ralimdva 2945 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑥𝑦 (𝑥𝑋 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
6935, 68syl5bi 231 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑥𝑋 (𝑥𝑦 → ∃𝑜𝐽𝑝𝐽 ((𝑋𝑦) ⊆ 𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7034, 69syld 46 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7170ralrimdva 2952 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅)) → ∀𝑦𝐽𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7271imp 444 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → ∀𝑦𝐽𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦))
73 isreg 20946 . . 3 (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦𝐽𝑥𝑦𝑝𝐽 (𝑥𝑝 ∧ ((cls‘𝐽)‘𝑝) ⊆ 𝑦)))
7415, 72, 73sylanbrc 695 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))) → 𝐽 ∈ Reg)
7513, 74impbida 873 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Reg ↔ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑥𝑋𝑥𝑐 → ∃𝑜𝐽𝑝𝐽 (𝑐𝑜𝑥𝑝 ∧ (𝑜𝑝) = ∅))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  ∪ cuni 4372  ‘cfv 5804  Topctop 20517  TopOnctopon 20518  Clsdccld 20630  clsccl 20632  Regcreg 20923 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-top 20521  df-topon 20523  df-cld 20633  df-cls 20635  df-reg 20930 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator