Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isref Structured version   Visualization version   GIF version

Theorem isref 21122
 Description: The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 31504. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
isref.1 𝑋 = 𝐴
isref.2 𝑌 = 𝐵
Assertion
Ref Expression
isref (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isref
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 21121 . . . 4 Rel Ref
21brrelex2i 5083 . . 3 (𝐴Ref𝐵𝐵 ∈ V)
32anim2i 591 . 2 ((𝐴𝐶𝐴Ref𝐵) → (𝐴𝐶𝐵 ∈ V))
4 simpl 472 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐴𝐶)
5 simpr 476 . . . . . . 7 ((𝐴𝐶𝑌 = 𝑋) → 𝑌 = 𝑋)
6 isref.2 . . . . . . 7 𝑌 = 𝐵
7 isref.1 . . . . . . 7 𝑋 = 𝐴
85, 6, 73eqtr3g 2667 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 = 𝐴)
9 uniexg 6853 . . . . . . 7 (𝐴𝐶 𝐴 ∈ V)
109adantr 480 . . . . . 6 ((𝐴𝐶𝑌 = 𝑋) → 𝐴 ∈ V)
118, 10eqeltrd 2688 . . . . 5 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
12 uniexb 6866 . . . . 5 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1311, 12sylibr 223 . . . 4 ((𝐴𝐶𝑌 = 𝑋) → 𝐵 ∈ V)
1413adantrr 749 . . 3 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → 𝐵 ∈ V)
154, 14jca 553 . 2 ((𝐴𝐶 ∧ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)) → (𝐴𝐶𝐵 ∈ V))
16 unieq 4380 . . . . . 6 (𝑎 = 𝐴 𝑎 = 𝐴)
1716, 7syl6eqr 2662 . . . . 5 (𝑎 = 𝐴 𝑎 = 𝑋)
1817eqeq2d 2620 . . . 4 (𝑎 = 𝐴 → ( 𝑏 = 𝑎 𝑏 = 𝑋))
19 raleq 3115 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝑏 𝑥𝑦))
2018, 19anbi12d 743 . . 3 (𝑎 = 𝐴 → (( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦) ↔ ( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦)))
21 unieq 4380 . . . . . 6 (𝑏 = 𝐵 𝑏 = 𝐵)
2221, 6syl6eqr 2662 . . . . 5 (𝑏 = 𝐵 𝑏 = 𝑌)
2322eqeq1d 2612 . . . 4 (𝑏 = 𝐵 → ( 𝑏 = 𝑋𝑌 = 𝑋))
24 rexeq 3116 . . . . 5 (𝑏 = 𝐵 → (∃𝑦𝑏 𝑥𝑦 ↔ ∃𝑦𝐵 𝑥𝑦))
2524ralbidv 2969 . . . 4 (𝑏 = 𝐵 → (∀𝑥𝐴𝑦𝑏 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝑦))
2623, 25anbi12d 743 . . 3 (𝑏 = 𝐵 → (( 𝑏 = 𝑋 ∧ ∀𝑥𝐴𝑦𝑏 𝑥𝑦) ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
27 df-ref 21118 . . 3 Ref = {⟨𝑎, 𝑏⟩ ∣ ( 𝑏 = 𝑎 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑦)}
2820, 26, 27brabg 4919 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
293, 15, 28pm5.21nd 939 1 (𝐴𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540  ∪ cuni 4372   class class class wbr 4583  Refcref 21115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-ref 21118 This theorem is referenced by:  refbas  21123  refssex  21124  ssref  21125  refref  21126  reftr  21127  refun0  21128  dissnref  21141  reff  29234  locfinreflem  29235  cmpcref  29245  fnessref  31522  refssfne  31523
 Copyright terms: Public domain W3C validator