MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf3 Structured version   Visualization version   GIF version

Theorem isperf3 20767
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf3 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem isperf3
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21isperf2 20766 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
3 dfss3 3558 . . . 4 (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋))
41maxlp 20761 . . . . . 6 (𝐽 ∈ Top → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑥𝑋 ∧ ¬ {𝑥} ∈ 𝐽)))
54baibd 946 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ¬ {𝑥} ∈ 𝐽))
65ralbidva 2968 . . . 4 (𝐽 ∈ Top → (∀𝑥𝑋 𝑥 ∈ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
73, 6syl5bb 271 . . 3 (𝐽 ∈ Top → (𝑋 ⊆ ((limPt‘𝐽)‘𝑋) ↔ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
87pm5.32i 667 . 2 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)) ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
92, 8bitri 263 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  {csn 4125   cuni 4372  cfv 5804  Topctop 20517  limPtclp 20748  Perfcperf 20749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-top 20521  df-cld 20633  df-ntr 20634  df-cls 20635  df-lp 20750  df-perf 20751
This theorem is referenced by:  perfi  20769  perfopn  20799  t1conperf  21049
  Copyright terms: Public domain W3C validator