Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isperf | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . 4 ⊢ (𝑗 = 𝐽 → (limPt‘𝑗) = (limPt‘𝐽)) | |
2 | unieq 4380 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | lpfval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | syl6eqr 2662 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
5 | 1, 4 | fveq12d 6109 | . . 3 ⊢ (𝑗 = 𝐽 → ((limPt‘𝑗)‘∪ 𝑗) = ((limPt‘𝐽)‘𝑋)) |
6 | 5, 4 | eqeq12d 2625 | . 2 ⊢ (𝑗 = 𝐽 → (((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗 ↔ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
7 | df-perf 20751 | . 2 ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} | |
8 | 6, 7 | elrab2 3333 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∪ cuni 4372 ‘cfv 5804 Topctop 20517 limPtclp 20748 Perfcperf 20749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-perf 20751 |
This theorem is referenced by: isperf2 20766 perflp 20768 perftop 20770 restperf 20798 |
Copyright terms: Public domain | W3C validator |