Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopos Structured version   Visualization version   GIF version

Theorem isopos 33485
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isopos.b 𝐵 = (Base‘𝐾)
isopos.e 𝑈 = (lub‘𝐾)
isopos.g 𝐺 = (glb‘𝐾)
isopos.l = (le‘𝐾)
isopos.o = (oc‘𝐾)
isopos.j = (join‘𝐾)
isopos.m = (meet‘𝐾)
isopos.f 0 = (0.‘𝐾)
isopos.u 1 = (1.‘𝐾)
Assertion
Ref Expression
isopos (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥, ,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   1 (𝑥,𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isopos
Dummy variables 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
2 isopos.b . . . . . . 7 𝐵 = (Base‘𝐾)
31, 2syl6eqr 2662 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
4 fveq2 6103 . . . . . . . 8 (𝑝 = 𝐾 → (lub‘𝑝) = (lub‘𝐾))
5 isopos.e . . . . . . . 8 𝑈 = (lub‘𝐾)
64, 5syl6eqr 2662 . . . . . . 7 (𝑝 = 𝐾 → (lub‘𝑝) = 𝑈)
76dmeqd 5248 . . . . . 6 (𝑝 = 𝐾 → dom (lub‘𝑝) = dom 𝑈)
83, 7eleq12d 2682 . . . . 5 (𝑝 = 𝐾 → ((Base‘𝑝) ∈ dom (lub‘𝑝) ↔ 𝐵 ∈ dom 𝑈))
9 fveq2 6103 . . . . . . . 8 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
10 isopos.g . . . . . . . 8 𝐺 = (glb‘𝐾)
119, 10syl6eqr 2662 . . . . . . 7 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
1211dmeqd 5248 . . . . . 6 (𝑝 = 𝐾 → dom (glb‘𝑝) = dom 𝐺)
133, 12eleq12d 2682 . . . . 5 (𝑝 = 𝐾 → ((Base‘𝑝) ∈ dom (glb‘𝑝) ↔ 𝐵 ∈ dom 𝐺))
148, 13anbi12d 743 . . . 4 (𝑝 = 𝐾 → (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ↔ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)))
15 fveq2 6103 . . . . . . . 8 (𝑝 = 𝐾 → (oc‘𝑝) = (oc‘𝐾))
16 isopos.o . . . . . . . 8 = (oc‘𝐾)
1715, 16syl6eqr 2662 . . . . . . 7 (𝑝 = 𝐾 → (oc‘𝑝) = )
1817eqeq2d 2620 . . . . . 6 (𝑝 = 𝐾 → (𝑛 = (oc‘𝑝) ↔ 𝑛 = ))
193eleq2d 2673 . . . . . . . . . 10 (𝑝 = 𝐾 → ((𝑛𝑥) ∈ (Base‘𝑝) ↔ (𝑛𝑥) ∈ 𝐵))
20 fveq2 6103 . . . . . . . . . . . . 13 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
21 isopos.l . . . . . . . . . . . . 13 = (le‘𝐾)
2220, 21syl6eqr 2662 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (le‘𝑝) = )
2322breqd 4594 . . . . . . . . . . 11 (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑦𝑥 𝑦))
2422breqd 4594 . . . . . . . . . . 11 (𝑝 = 𝐾 → ((𝑛𝑦)(le‘𝑝)(𝑛𝑥) ↔ (𝑛𝑦) (𝑛𝑥)))
2523, 24imbi12d 333 . . . . . . . . . 10 (𝑝 = 𝐾 → ((𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥)) ↔ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))))
2619, 253anbi13d 1393 . . . . . . . . 9 (𝑝 = 𝐾 → (((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ↔ ((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥)))))
27 fveq2 6103 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (join‘𝑝) = (join‘𝐾))
28 isopos.j . . . . . . . . . . . 12 = (join‘𝐾)
2927, 28syl6eqr 2662 . . . . . . . . . . 11 (𝑝 = 𝐾 → (join‘𝑝) = )
3029oveqd 6566 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑥(join‘𝑝)(𝑛𝑥)) = (𝑥 (𝑛𝑥)))
31 fveq2 6103 . . . . . . . . . . 11 (𝑝 = 𝐾 → (1.‘𝑝) = (1.‘𝐾))
32 isopos.u . . . . . . . . . . 11 1 = (1.‘𝐾)
3331, 32syl6eqr 2662 . . . . . . . . . 10 (𝑝 = 𝐾 → (1.‘𝑝) = 1 )
3430, 33eqeq12d 2625 . . . . . . . . 9 (𝑝 = 𝐾 → ((𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ↔ (𝑥 (𝑛𝑥)) = 1 ))
35 fveq2 6103 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (meet‘𝑝) = (meet‘𝐾))
36 isopos.m . . . . . . . . . . . 12 = (meet‘𝐾)
3735, 36syl6eqr 2662 . . . . . . . . . . 11 (𝑝 = 𝐾 → (meet‘𝑝) = )
3837oveqd 6566 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)(𝑛𝑥)) = (𝑥 (𝑛𝑥)))
39 fveq2 6103 . . . . . . . . . . 11 (𝑝 = 𝐾 → (0.‘𝑝) = (0.‘𝐾))
40 isopos.f . . . . . . . . . . 11 0 = (0.‘𝐾)
4139, 40syl6eqr 2662 . . . . . . . . . 10 (𝑝 = 𝐾 → (0.‘𝑝) = 0 )
4238, 41eqeq12d 2625 . . . . . . . . 9 (𝑝 = 𝐾 → ((𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝) ↔ (𝑥 (𝑛𝑥)) = 0 ))
4326, 34, 423anbi123d 1391 . . . . . . . 8 (𝑝 = 𝐾 → ((((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)) ↔ (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))
443, 43raleqbidv 3129 . . . . . . 7 (𝑝 = 𝐾 → (∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)) ↔ ∀𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))
453, 44raleqbidv 3129 . . . . . 6 (𝑝 = 𝐾 → (∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)) ↔ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))
4618, 45anbi12d 743 . . . . 5 (𝑝 = 𝐾 → ((𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝))) ↔ (𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))))
4746exbidv 1837 . . . 4 (𝑝 = 𝐾 → (∃𝑛(𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝))) ↔ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))))
4814, 47anbi12d 743 . . 3 (𝑝 = 𝐾 → ((((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑛(𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝)))) ↔ ((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))))
49 df-oposet 33481 . . 3 OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑛(𝑛 = (oc‘𝑝) ∧ ∀𝑥 ∈ (Base‘𝑝)∀𝑦 ∈ (Base‘𝑝)(((𝑛𝑥) ∈ (Base‘𝑝) ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥(le‘𝑝)𝑦 → (𝑛𝑦)(le‘𝑝)(𝑛𝑥))) ∧ (𝑥(join‘𝑝)(𝑛𝑥)) = (1.‘𝑝) ∧ (𝑥(meet‘𝑝)(𝑛𝑥)) = (0.‘𝑝))))}
5048, 49elrab2 3333 . 2 (𝐾 ∈ OP ↔ (𝐾 ∈ Poset ∧ ((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))))
51 anass 679 . 2 (((𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))) ↔ (𝐾 ∈ Poset ∧ ((𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )))))
52 3anass 1035 . . . 4 ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ↔ (𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)))
5352bicomi 213 . . 3 ((𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)) ↔ (𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺))
54 fvex 6113 . . . . 5 (oc‘𝐾) ∈ V
5516, 54eqeltri 2684 . . . 4 ∈ V
56 fveq1 6102 . . . . . . . 8 (𝑛 = → (𝑛𝑥) = ( 𝑥))
5756eleq1d 2672 . . . . . . 7 (𝑛 = → ((𝑛𝑥) ∈ 𝐵 ↔ ( 𝑥) ∈ 𝐵))
58 id 22 . . . . . . . . 9 (𝑛 = 𝑛 = )
5958, 56fveq12d 6109 . . . . . . . 8 (𝑛 = → (𝑛‘(𝑛𝑥)) = ( ‘( 𝑥)))
6059eqeq1d 2612 . . . . . . 7 (𝑛 = → ((𝑛‘(𝑛𝑥)) = 𝑥 ↔ ( ‘( 𝑥)) = 𝑥))
61 fveq1 6102 . . . . . . . . 9 (𝑛 = → (𝑛𝑦) = ( 𝑦))
6261, 56breq12d 4596 . . . . . . . 8 (𝑛 = → ((𝑛𝑦) (𝑛𝑥) ↔ ( 𝑦) ( 𝑥)))
6362imbi2d 329 . . . . . . 7 (𝑛 = → ((𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥)) ↔ (𝑥 𝑦 → ( 𝑦) ( 𝑥))))
6457, 60, 633anbi123d 1391 . . . . . 6 (𝑛 = → (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ↔ (( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥)))))
6556oveq2d 6565 . . . . . . 7 (𝑛 = → (𝑥 (𝑛𝑥)) = (𝑥 ( 𝑥)))
6665eqeq1d 2612 . . . . . 6 (𝑛 = → ((𝑥 (𝑛𝑥)) = 1 ↔ (𝑥 ( 𝑥)) = 1 ))
6756oveq2d 6565 . . . . . . 7 (𝑛 = → (𝑥 (𝑛𝑥)) = (𝑥 ( 𝑥)))
6867eqeq1d 2612 . . . . . 6 (𝑛 = → ((𝑥 (𝑛𝑥)) = 0 ↔ (𝑥 ( 𝑥)) = 0 ))
6964, 66, 683anbi123d 1391 . . . . 5 (𝑛 = → ((((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ) ↔ ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
70692ralbidv 2972 . . . 4 (𝑛 = → (∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ) ↔ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
7155, 70ceqsexv 3215 . . 3 (∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 )) ↔ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 ))
7253, 71anbi12i 729 . 2 (((𝐾 ∈ Poset ∧ (𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺)) ∧ ∃𝑛(𝑛 = ∧ ∀𝑥𝐵𝑦𝐵 (((𝑛𝑥) ∈ 𝐵 ∧ (𝑛‘(𝑛𝑥)) = 𝑥 ∧ (𝑥 𝑦 → (𝑛𝑦) (𝑛𝑥))) ∧ (𝑥 (𝑛𝑥)) = 1 ∧ (𝑥 (𝑛𝑥)) = 0 ))) ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
7350, 51, 723bitr2i 287 1 (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈𝐵 ∈ dom 𝐺) ∧ ∀𝑥𝐵𝑦𝐵 ((( 𝑥) ∈ 𝐵 ∧ ( ‘( 𝑥)) = 𝑥 ∧ (𝑥 𝑦 → ( 𝑦) ( 𝑥))) ∧ (𝑥 ( 𝑥)) = 1 ∧ (𝑥 ( 𝑥)) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  Vcvv 3173   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  occoc 15776  Posetcpo 16763  lubclub 16765  glbcglb 16766  joincjn 16767  meetcmee 16768  0.cp0 16860  1.cp1 16861  OPcops 33477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-dm 5048  df-iota 5768  df-fv 5812  df-ov 6552  df-oposet 33481
This theorem is referenced by:  opposet  33486  oposlem  33487  op01dm  33488
  Copyright terms: Public domain W3C validator