Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isohom Structured version   Visualization version   GIF version

Theorem isohom 16259
 Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isohom.b 𝐵 = (Base‘𝐶)
isohom.h 𝐻 = (Hom ‘𝐶)
isohom.i 𝐼 = (Iso‘𝐶)
isohom.c (𝜑𝐶 ∈ Cat)
isohom.x (𝜑𝑋𝐵)
isohom.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isohom (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))

Proof of Theorem isohom
StepHypRef Expression
1 isohom.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2610 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 isohom.c . . . 4 (𝜑𝐶 ∈ Cat)
4 isohom.x . . . 4 (𝜑𝑋𝐵)
5 isohom.y . . . 4 (𝜑𝑌𝐵)
6 isohom.i . . . 4 𝐼 = (Iso‘𝐶)
71, 2, 3, 4, 5, 6isoval 16248 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
8 isohom.h . . . . 5 𝐻 = (Hom ‘𝐶)
91, 2, 3, 4, 5, 8invss 16244 . . . 4 (𝜑 → (𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
10 dmss 5245 . . . 4 ((𝑋(Inv‘𝐶)𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
119, 10syl 17 . . 3 (𝜑 → dom (𝑋(Inv‘𝐶)𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
127, 11eqsstrd 3602 . 2 (𝜑 → (𝑋𝐼𝑌) ⊆ dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
13 dmxpss 5484 . 2 dom ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)) ⊆ (𝑋𝐻𝑌)
1412, 13syl6ss 3580 1 (𝜑 → (𝑋𝐼𝑌) ⊆ (𝑋𝐻𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540   × cxp 5036  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  Catccat 16148  Invcinv 16228  Isociso 16229 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-sect 16230  df-inv 16231  df-iso 16232 This theorem is referenced by:  invisoinvl  16273  invcoisoid  16275  isocoinvid  16276  rcaninv  16277  ffthiso  16412  fuciso  16458  initoeu1  16484  initoeu2lem0  16486  initoeu2lem1  16487  initoeu2  16489  termoeu1  16491  nzerooringczr  41864
 Copyright terms: Public domain W3C validator