Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofval Structured version   Visualization version   GIF version

Theorem isofval 16240
 Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.)
Assertion
Ref Expression
isofval (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Distinct variable group:   𝑥,𝐶

Proof of Theorem isofval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-iso 16232 . . 3 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
21a1i 11 . 2 (𝐶 ∈ Cat → Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))))
3 fveq2 6103 . . . 4 (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶))
43coeq2d 5206 . . 3 (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
54adantl 481 . 2 ((𝐶 ∈ Cat ∧ 𝑐 = 𝐶) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
6 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
7 funmpt 5840 . . 3 Fun (𝑥 ∈ V ↦ dom 𝑥)
8 fvex 6113 . . . 4 (Inv‘𝐶) ∈ V
98a1i 11 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V)
10 cofunexg 7023 . . 3 ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
117, 9, 10sylancr 694 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
122, 5, 6, 11fvmptd 6197 1 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ↦ cmpt 4643  dom cdm 5038   ∘ ccom 5042  Fun wfun 5798  ‘cfv 5804  Catccat 16148  Invcinv 16228  Isociso 16229 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-iso 16232 This theorem is referenced by:  isoval  16248  isofn  16258
 Copyright terms: Public domain W3C validator