Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnsg Structured version   Visualization version   GIF version

Theorem isnsg 17446
 Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
isnsg (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem isnsg
Dummy variables 𝑔 𝑏 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 17415 . . . 4 NrmSGrp = (𝑔 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)})
21dmmptss 5548 . . 3 dom NrmSGrp ⊆ Grp
3 elfvdm 6130 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ dom NrmSGrp)
42, 3sseldi 3566 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
5 subgrcl 17422 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
65adantr 480 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) → 𝐺 ∈ Grp)
7 fveq2 6103 . . . . . 6 (𝑔 = 𝐺 → (SubGrp‘𝑔) = (SubGrp‘𝐺))
8 fvex 6113 . . . . . . . 8 (Base‘𝑔) ∈ V
98a1i 11 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) ∈ V)
10 fveq2 6103 . . . . . . . 8 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
11 isnsg.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
1210, 11syl6eqr 2662 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
13 fvex 6113 . . . . . . . . 9 (+g𝑔) ∈ V
1413a1i 11 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) ∈ V)
15 simpl 472 . . . . . . . . . 10 ((𝑔 = 𝐺𝑏 = 𝑋) → 𝑔 = 𝐺)
1615fveq2d 6107 . . . . . . . . 9 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = (+g𝐺))
17 isnsg.2 . . . . . . . . 9 + = (+g𝐺)
1816, 17syl6eqr 2662 . . . . . . . 8 ((𝑔 = 𝐺𝑏 = 𝑋) → (+g𝑔) = + )
19 simplr 788 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑏 = 𝑋)
20 simpr 476 . . . . . . . . . . . . 13 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → 𝑝 = + )
2120oveqd 6566 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
2221eleq1d 2672 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑠))
2320oveqd 6566 . . . . . . . . . . . 12 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (𝑦𝑝𝑥) = (𝑦 + 𝑥))
2423eleq1d 2672 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → ((𝑦𝑝𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠))
2522, 24bibi12d 334 . . . . . . . . . 10 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
2619, 25raleqbidv 3129 . . . . . . . . 9 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
2719, 26raleqbidv 3129 . . . . . . . 8 (((𝑔 = 𝐺𝑏 = 𝑋) ∧ 𝑝 = + ) → (∀𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
2814, 18, 27sbcied2 3440 . . . . . . 7 ((𝑔 = 𝐺𝑏 = 𝑋) → ([(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
299, 12, 28sbcied2 3440 . . . . . 6 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)))
307, 29rabeqbidv 3168 . . . . 5 (𝑔 = 𝐺 → {𝑠 ∈ (SubGrp‘𝑔) ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)} = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
31 fvex 6113 . . . . . 6 (SubGrp‘𝐺) ∈ V
3231rabex 4740 . . . . 5 {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ∈ V
3330, 1, 32fvmpt 6191 . . . 4 (𝐺 ∈ Grp → (NrmSGrp‘𝐺) = {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)})
3433eleq2d 2673 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ 𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}))
35 eleq2 2677 . . . . . 6 (𝑠 = 𝑆 → ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑥 + 𝑦) ∈ 𝑆))
36 eleq2 2677 . . . . . 6 (𝑠 = 𝑆 → ((𝑦 + 𝑥) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑆))
3735, 36bibi12d 334 . . . . 5 (𝑠 = 𝑆 → (((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
38372ralbidv 2972 . . . 4 (𝑠 = 𝑆 → (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
3938elrab 3331 . . 3 (𝑆 ∈ {𝑠 ∈ (SubGrp‘𝐺) ∣ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)} ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
4034, 39syl6bb 275 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))))
414, 6, 40pm5.21nii 367 1 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173  [wsbc 3402  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  SubGrpcsubg 17411  NrmSGrpcnsg 17412 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-subg 17414  df-nsg 17415 This theorem is referenced by:  isnsg2  17447  nsgbi  17448  nsgsubg  17449  isnsg4  17460  nmznsg  17461  ablnsg  18073  rzgrp  24104
 Copyright terms: Public domain W3C validator