MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlm Structured version   Visualization version   GIF version

Theorem isnlm 22289
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Base‘𝑊)
isnlm.n 𝑁 = (norm‘𝑊)
isnlm.s · = ( ·𝑠𝑊)
isnlm.f 𝐹 = (Scalar‘𝑊)
isnlm.k 𝐾 = (Base‘𝐹)
isnlm.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
isnlm (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑁,𝑦   𝑥,𝑉,𝑦   𝑥,𝐾   𝑥,𝑊,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐾(𝑦)

Proof of Theorem isnlm
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 679 . 2 (((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))) ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
2 df-3an 1033 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ NrmRing))
3 elin 3758 . . . . 5 (𝑊 ∈ (NrmGrp ∩ LMod) ↔ (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod))
43anbi1i 727 . . . 4 ((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ NrmRing))
52, 4bitr4i 266 . . 3 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing))
65anbi1i 727 . 2 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))) ↔ ((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
7 fvex 6113 . . . . 5 (Scalar‘𝑤) ∈ V
87a1i 11 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
9 id 22 . . . . . . 7 (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤))
10 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
11 isnlm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
1210, 11syl6eqr 2662 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
139, 12sylan9eqr 2666 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹)
1413eleq1d 2672 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing))
1513fveq2d 6107 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹))
16 isnlm.k . . . . . . 7 𝐾 = (Base‘𝐹)
1715, 16syl6eqr 2662 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾)
18 simpl 472 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑤 = 𝑊)
1918fveq2d 6107 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = (Base‘𝑊))
20 isnlm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2119, 20syl6eqr 2662 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = 𝑉)
2218fveq2d 6107 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = (norm‘𝑊))
23 isnlm.n . . . . . . . . . 10 𝑁 = (norm‘𝑊)
2422, 23syl6eqr 2662 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = 𝑁)
2518fveq2d 6107 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ( ·𝑠𝑤) = ( ·𝑠𝑊))
26 isnlm.s . . . . . . . . . . 11 · = ( ·𝑠𝑊)
2725, 26syl6eqr 2662 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ( ·𝑠𝑤) = · )
2827oveqd 6566 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
2924, 28fveq12d 6109 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (𝑁‘(𝑥 · 𝑦)))
3013fveq2d 6107 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = (norm‘𝐹))
31 isnlm.a . . . . . . . . . . 11 𝐴 = (norm‘𝐹)
3230, 31syl6eqr 2662 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = 𝐴)
3332fveq1d 6105 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑓)‘𝑥) = (𝐴𝑥))
3424fveq1d 6105 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘𝑦) = (𝑁𝑦))
3533, 34oveq12d 6567 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))
3629, 35eqeq12d 2625 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3721, 36raleqbidv 3129 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3817, 37raleqbidv 3129 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3914, 38anbi12d 743 . . . 4 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
408, 39sbcied 3439 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
41 df-nlm 22201 . . 3 NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))}
4240, 41elrab2 3333 . 2 (𝑊 ∈ NrmMod ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
431, 6, 423bitr4ri 292 1 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  [wsbc 3402  cin 3539  cfv 5804  (class class class)co 6549   · cmul 9820  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  LModclmod 18686  normcnm 22191  NrmGrpcngp 22192  NrmRingcnrg 22194  NrmModcnlm 22195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-nlm 22201
This theorem is referenced by:  nmvs  22290  nlmngp  22291  nlmlmod  22292  nlmnrg  22293  sranlm  22298  lssnlm  22315  isncvsngp  22757  tchcph  22844  cnzh  29342  rezh  29343
  Copyright terms: Public domain W3C validator