MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlly Structured version   Visualization version   GIF version

Theorem isnlly 21082
Description: The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
isnlly (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐽,𝑥,𝑦

Proof of Theorem isnlly
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . 7 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
21fveq1d 6105 . . . . . 6 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑦}) = ((nei‘𝐽)‘{𝑦}))
32ineq1d 3775 . . . . 5 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
4 oveq1 6556 . . . . . 6 (𝑗 = 𝐽 → (𝑗t 𝑢) = (𝐽t 𝑢))
54eleq1d 2672 . . . . 5 (𝑗 = 𝐽 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝐽t 𝑢) ∈ 𝐴))
63, 5rexeqbidv 3130 . . . 4 (𝑗 = 𝐽 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
76ralbidv 2969 . . 3 (𝑗 = 𝐽 → (∀𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
87raleqbi1dv 3123 . 2 (𝑗 = 𝐽 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
9 df-nlly 21080 . 2 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
108, 9elrab2 3333 1 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  𝒫 cpw 4108  {csn 4125  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  neicnei 20711  𝑛-Locally cnlly 21078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-nlly 21080
This theorem is referenced by:  nllytop  21086  nllyi  21088  llynlly  21090  nllyss  21093  nllyrest  21099  nllyidm  21102  hausllycmp  21107  cldllycmp  21108  txnlly  21250  cnllycmp  22563
  Copyright terms: Public domain W3C validator