Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyval Structured version   Visualization version   GIF version

Theorem ismtyval 32769
Description: The set of isometries between two metric spaces. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ismtyval ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))})
Distinct variable groups:   𝑓,𝑀,𝑥,𝑦   𝑓,𝑁,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦

Proof of Theorem ismtyval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ismty 32768 . . 3 Ismty = (𝑚 ran ∞Met, 𝑛 ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)))})
21a1i 11 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → Ismty = (𝑚 ran ∞Met, 𝑛 ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)))}))
3 dmeq 5246 . . . . . . . . . 10 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
4 xmetf 21944 . . . . . . . . . . 11 (𝑀 ∈ (∞Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ*)
5 fdm 5964 . . . . . . . . . . 11 (𝑀:(𝑋 × 𝑋)⟶ℝ* → dom 𝑀 = (𝑋 × 𝑋))
64, 5syl 17 . . . . . . . . . 10 (𝑀 ∈ (∞Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
73, 6sylan9eqr 2666 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑚 = 𝑀) → dom 𝑚 = (𝑋 × 𝑋))
87ad2ant2r 779 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → dom 𝑚 = (𝑋 × 𝑋))
98dmeqd 5248 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → dom dom 𝑚 = dom (𝑋 × 𝑋))
10 dmxpid 5266 . . . . . . 7 dom (𝑋 × 𝑋) = 𝑋
119, 10syl6eq 2660 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → dom dom 𝑚 = 𝑋)
12 f1oeq2 6041 . . . . . 6 (dom dom 𝑚 = 𝑋 → (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛𝑓:𝑋1-1-onto→dom dom 𝑛))
1311, 12syl 17 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛𝑓:𝑋1-1-onto→dom dom 𝑛))
14 dmeq 5246 . . . . . . . . . 10 (𝑛 = 𝑁 → dom 𝑛 = dom 𝑁)
15 xmetf 21944 . . . . . . . . . . 11 (𝑁 ∈ (∞Met‘𝑌) → 𝑁:(𝑌 × 𝑌)⟶ℝ*)
16 fdm 5964 . . . . . . . . . . 11 (𝑁:(𝑌 × 𝑌)⟶ℝ* → dom 𝑁 = (𝑌 × 𝑌))
1715, 16syl 17 . . . . . . . . . 10 (𝑁 ∈ (∞Met‘𝑌) → dom 𝑁 = (𝑌 × 𝑌))
1814, 17sylan9eqr 2666 . . . . . . . . 9 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑛 = 𝑁) → dom 𝑛 = (𝑌 × 𝑌))
1918ad2ant2l 778 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → dom 𝑛 = (𝑌 × 𝑌))
2019dmeqd 5248 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → dom dom 𝑛 = dom (𝑌 × 𝑌))
21 dmxpid 5266 . . . . . . 7 dom (𝑌 × 𝑌) = 𝑌
2220, 21syl6eq 2660 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → dom dom 𝑛 = 𝑌)
23 f1oeq3 6042 . . . . . 6 (dom dom 𝑛 = 𝑌 → (𝑓:𝑋1-1-onto→dom dom 𝑛𝑓:𝑋1-1-onto𝑌))
2422, 23syl 17 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (𝑓:𝑋1-1-onto→dom dom 𝑛𝑓:𝑋1-1-onto𝑌))
2513, 24bitrd 267 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛𝑓:𝑋1-1-onto𝑌))
26 oveq 6555 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥𝑚𝑦) = (𝑥𝑀𝑦))
27 oveq 6555 . . . . . . . 8 (𝑛 = 𝑁 → ((𝑓𝑥)𝑛(𝑓𝑦)) = ((𝑓𝑥)𝑁(𝑓𝑦)))
2826, 27eqeqan12d 2626 . . . . . . 7 ((𝑚 = 𝑀𝑛 = 𝑁) → ((𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)) ↔ (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))))
2928adantl 481 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → ((𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)) ↔ (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))))
3011, 29raleqbidv 3129 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (∀𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))))
3111, 30raleqbidv 3129 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → (∀𝑥 ∈ dom dom 𝑚𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))))
3225, 31anbi12d 743 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → ((𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦))) ↔ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))))
3332abbidv 2728 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑚 = 𝑀𝑛 = 𝑁)) → {𝑓 ∣ (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)))} = {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))})
34 fvssunirn 6127 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
35 simpl 472 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝑀 ∈ (∞Met‘𝑋))
3634, 35sseldi 3566 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝑀 ran ∞Met)
37 fvssunirn 6127 . . 3 (∞Met‘𝑌) ⊆ ran ∞Met
38 simpr 476 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝑁 ∈ (∞Met‘𝑌))
3937, 38sseldi 3566 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝑁 ran ∞Met)
40 f1of 6050 . . . . . 6 (𝑓:𝑋1-1-onto𝑌𝑓:𝑋𝑌)
4140adantr 480 . . . . 5 ((𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))) → 𝑓:𝑋𝑌)
42 elfvdm 6130 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 ∈ dom ∞Met)
43 elfvdm 6130 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
44 elmapg 7757 . . . . . 6 ((𝑌 ∈ dom ∞Met ∧ 𝑋 ∈ dom ∞Met) → (𝑓 ∈ (𝑌𝑚 𝑋) ↔ 𝑓:𝑋𝑌))
4542, 43, 44syl2anr 494 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑌𝑚 𝑋) ↔ 𝑓:𝑋𝑌))
4641, 45syl5ibr 235 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → ((𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))) → 𝑓 ∈ (𝑌𝑚 𝑋)))
4746abssdv 3639 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ⊆ (𝑌𝑚 𝑋))
48 ovex 6577 . . . 4 (𝑌𝑚 𝑋) ∈ V
4948ssex 4730 . . 3 ({𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ⊆ (𝑌𝑚 𝑋) → {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ∈ V)
5047, 49syl 17 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ∈ V)
512, 33, 36, 39, 50ovmpt2d 6686 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  wss 3540   cuni 4372   × cxp 5036  dom cdm 5038  ran crn 5039  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  *cxr 9952  ∞Metcxmt 19552   Ismty cismty 32767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-xr 9957  df-xmet 19560  df-ismty 32768
This theorem is referenced by:  isismty  32770
  Copyright terms: Public domain W3C validator