MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf1 Structured version   Visualization version   GIF version

Theorem ismbf1 23199
Description: The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 23203 and ismbfcn 23204 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Distinct variable group:   𝑥,𝐹

Proof of Theorem ismbf1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 coeq2 5202 . . . . . . 7 (𝑓 = 𝐹 → (ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
21cnveqd 5220 . . . . . 6 (𝑓 = 𝐹(ℜ ∘ 𝑓) = (ℜ ∘ 𝐹))
32imaeq1d 5384 . . . . 5 (𝑓 = 𝐹 → ((ℜ ∘ 𝑓) “ 𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
43eleq1d 2672 . . . 4 (𝑓 = 𝐹 → (((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
5 coeq2 5202 . . . . . . 7 (𝑓 = 𝐹 → (ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
65cnveqd 5220 . . . . . 6 (𝑓 = 𝐹(ℑ ∘ 𝑓) = (ℑ ∘ 𝐹))
76imaeq1d 5384 . . . . 5 (𝑓 = 𝐹 → ((ℑ ∘ 𝑓) “ 𝑥) = ((ℑ ∘ 𝐹) “ 𝑥))
87eleq1d 2672 . . . 4 (𝑓 = 𝐹 → (((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol ↔ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
94, 8anbi12d 743 . . 3 (𝑓 = 𝐹 → ((((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
109ralbidv 2969 . 2 (𝑓 = 𝐹 → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol) ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
11 df-mbf 23194 . 2 MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)}
1210, 11elrab2 3333 1 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  (class class class)co 6549  pm cpm 7745  cc 9813  cr 9814  (,)cioo 12046  cre 13685  cim 13686  volcvol 23039  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-mbf 23194
This theorem is referenced by:  mbff  23200  mbfdm  23201  ismbf  23203  ismbfcn  23204  mbfconst  23208  mbfres  23217  cncombf  23231  cnmbf  23232  mbfdmssre  38893
  Copyright terms: Public domain W3C validator