Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islininds Structured version   Visualization version   GIF version

Theorem islininds 42029
 Description: The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islininds.b 𝐵 = (Base‘𝑀)
islininds.z 𝑍 = (0g𝑀)
islininds.r 𝑅 = (Scalar‘𝑀)
islininds.e 𝐸 = (Base‘𝑅)
islininds.0 0 = (0g𝑅)
Assertion
Ref Expression
islininds ((𝑆𝑉𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)   0 (𝑥,𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem islininds
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑠 = 𝑆)
2 fveq2 6103 . . . . . . 7 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
3 islininds.b . . . . . . 7 𝐵 = (Base‘𝑀)
42, 3syl6eqr 2662 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
54adantl 481 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (Base‘𝑚) = 𝐵)
65pweqd 4113 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝒫 (Base‘𝑚) = 𝒫 𝐵)
71, 6eleq12d 2682 . . 3 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑠 ∈ 𝒫 (Base‘𝑚) ↔ 𝑆 ∈ 𝒫 𝐵))
8 fveq2 6103 . . . . . . . . 9 (𝑚 = 𝑀 → (Scalar‘𝑚) = (Scalar‘𝑀))
9 islininds.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
108, 9syl6eqr 2662 . . . . . . . 8 (𝑚 = 𝑀 → (Scalar‘𝑚) = 𝑅)
1110fveq2d 6107 . . . . . . 7 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘𝑅))
12 islininds.e . . . . . . 7 𝐸 = (Base‘𝑅)
1311, 12syl6eqr 2662 . . . . . 6 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = 𝐸)
1413adantl 481 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (Base‘(Scalar‘𝑚)) = 𝐸)
1514, 1oveq12d 6567 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑠) = (𝐸𝑚 𝑆))
168adantl 481 . . . . . . . . . 10 ((𝑠 = 𝑆𝑚 = 𝑀) → (Scalar‘𝑚) = (Scalar‘𝑀))
1716, 9syl6eqr 2662 . . . . . . . . 9 ((𝑠 = 𝑆𝑚 = 𝑀) → (Scalar‘𝑚) = 𝑅)
1817fveq2d 6107 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g‘(Scalar‘𝑚)) = (0g𝑅))
19 islininds.0 . . . . . . . 8 0 = (0g𝑅)
2018, 19syl6eqr 2662 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g‘(Scalar‘𝑚)) = 0 )
2120breq2d 4595 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑓 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑓 finSupp 0 ))
22 fveq2 6103 . . . . . . . . 9 (𝑚 = 𝑀 → ( linC ‘𝑚) = ( linC ‘𝑀))
2322adantl 481 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → ( linC ‘𝑚) = ( linC ‘𝑀))
24 eqidd 2611 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑓 = 𝑓)
2523, 24, 1oveq123d 6570 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑓( linC ‘𝑚)𝑠) = (𝑓( linC ‘𝑀)𝑆))
26 fveq2 6103 . . . . . . . . 9 (𝑚 = 𝑀 → (0g𝑚) = (0g𝑀))
2726adantl 481 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g𝑚) = (0g𝑀))
28 islininds.z . . . . . . . 8 𝑍 = (0g𝑀)
2927, 28syl6eqr 2662 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g𝑚) = 𝑍)
3025, 29eqeq12d 2625 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑓( linC ‘𝑚)𝑠) = (0g𝑚) ↔ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
3121, 30anbi12d 743 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) ↔ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)))
3210fveq2d 6107 . . . . . . . . 9 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = (0g𝑅))
3332, 19syl6eqr 2662 . . . . . . . 8 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = 0 )
3433adantl 481 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g‘(Scalar‘𝑚)) = 0 )
3534eqeq2d 2620 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑓𝑥) = (0g‘(Scalar‘𝑚)) ↔ (𝑓𝑥) = 0 ))
361, 35raleqbidv 3129 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚)) ↔ ∀𝑥𝑆 (𝑓𝑥) = 0 ))
3731, 36imbi12d 333 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → (((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
3815, 37raleqbidv 3129 . . 3 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))) ↔ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
397, 38anbi12d 743 . 2 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚)))) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
40 df-lininds 42025 . 2 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
4139, 40brabga 4914 1 ((𝑆𝑉𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  𝒫 cpw 4108   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771  0gc0g 15923   linC clinc 41987   linIndS clininds 42023 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-iota 5768  df-fv 5812  df-ov 6552  df-lininds 42025 This theorem is referenced by:  linindsi  42030  islinindfis  42032  islindeps  42036  lindslininds  42047  linds0  42048  lindsrng01  42051  snlindsntor  42054
 Copyright terms: Public domain W3C validator