Proof of Theorem islinindfis
Step | Hyp | Ref
| Expression |
1 | | islininds.b |
. . 3
⊢ 𝐵 = (Base‘𝑀) |
2 | | islininds.z |
. . 3
⊢ 𝑍 = (0g‘𝑀) |
3 | | islininds.r |
. . 3
⊢ 𝑅 = (Scalar‘𝑀) |
4 | | islininds.e |
. . 3
⊢ 𝐸 = (Base‘𝑅) |
5 | | islininds.0 |
. . 3
⊢ 0 =
(0g‘𝑅) |
6 | 1, 2, 3, 4, 5 | islininds 42029 |
. 2
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
7 | | pm4.79 605 |
. . . . . . 7
⊢ (((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
8 | | elmapi 7765 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐸 ↑𝑚 𝑆) → 𝑓:𝑆⟶𝐸) |
9 | 8 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → 𝑓:𝑆⟶𝐸) |
10 | | simpll 786 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → 𝑆 ∈ Fin) |
11 | | fvex 6113 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑅) ∈ V |
12 | 5, 11 | eqeltri 2684 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
13 | 12 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → 0 ∈ V) |
14 | 9, 10, 13 | fdmfifsupp 8168 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → 𝑓 finSupp 0 ) |
15 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → 𝑓 finSupp 0 ) |
16 | 15 | imim1i 61 |
. . . . . . . . 9
⊢ ((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
17 | 16 | expd 451 |
. . . . . . . 8
⊢ ((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
18 | | ax-1 6 |
. . . . . . . 8
⊢ (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
19 | 17, 18 | jaoi 393 |
. . . . . . 7
⊢ (((𝑓 finSupp 0 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ∨ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
20 | 7, 19 | sylbir 224 |
. . . . . 6
⊢ (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
21 | 20 | com12 32 |
. . . . 5
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
22 | | pm3.42 581 |
. . . . 5
⊢ (((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
23 | 21, 22 | impbid1 214 |
. . . 4
⊢ (((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) ∧ 𝑓 ∈ (𝐸 ↑𝑚 𝑆)) → (((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
24 | 23 | ralbidva 2968 |
. . 3
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ) ↔ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
25 | 24 | anbi2d 736 |
. 2
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → ((𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
26 | 6, 25 | bitrd 267 |
1
⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |