MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinag Structured version   Visualization version   GIF version

Theorem isinag 25529
Description: Property for point 𝑋 to lie in the angle ⟨“𝐴𝐵𝐶”⟩ Defnition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
isinag.g (𝜑𝐺𝑉)
Assertion
Ref Expression
isinag (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐺   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem isinag
Dummy variables 𝑝 𝑡 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑡 = ⟨“𝐴𝐵𝐶”⟩)
21fveq1d 6105 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
31fveq1d 6105 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
42, 3neeq12d 2843 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
51fveq1d 6105 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑡‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
65, 3neeq12d 2843 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘2) ≠ (𝑡‘1) ↔ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
7 simpl 472 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑝 = 𝑋)
87, 3neeq12d 2843 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑝 ≠ (𝑡‘1) ↔ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)))
94, 6, 83anbi123d 1391 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ↔ ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1))))
10 eqidd 2611 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → 𝑥 = 𝑥)
112, 5oveq12d 6567 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑡‘0)𝐼(𝑡‘2)) = ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)))
1210, 11eleq12d 2682 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ↔ 𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2))))
1310, 3eqeq12d 2625 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥 = (𝑡‘1) ↔ 𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1)))
143fveq2d 6107 . . . . . . . . . 10 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝐾‘(𝑡‘1)) = (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)))
1510, 14, 7breq123d 4597 . . . . . . . . 9 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (𝑥(𝐾‘(𝑡‘1))𝑝𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))
1613, 15orbi12d 742 . . . . . . . 8 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝) ↔ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))
1712, 16anbi12d 743 . . . . . . 7 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
1817rexbidv 3034 . . . . . 6 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → (∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))
199, 18anbi12d 743 . . . . 5 ((𝑝 = 𝑋𝑡 = ⟨“𝐴𝐵𝐶”⟩) → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) ↔ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
20 eqid 2610 . . . . 5 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}
2119, 20brab2a 5091 . . . 4 (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))))
2221a1i 11 . . 3 (𝜑 → (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))))))
23 biidd 251 . . . 4 (𝜑 → ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ↔ (𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))))
24 isinag.a . . . . . . . 8 (𝜑𝐴𝑃)
25 s3fv0 13486 . . . . . . . 8 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
2624, 25syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
27 isinag.b . . . . . . . 8 (𝜑𝐵𝑃)
28 s3fv1 13487 . . . . . . . 8 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2927, 28syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
3026, 29neeq12d 2843 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐴𝐵))
31 isinag.c . . . . . . . 8 (𝜑𝐶𝑃)
32 s3fv2 13488 . . . . . . . 8 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3331, 32syl 17 . . . . . . 7 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3433, 29neeq12d 2843 . . . . . 6 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝐶𝐵))
3529neeq2d 2842 . . . . . 6 (𝜑 → (𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑋𝐵))
3630, 34, 353anbi123d 1391 . . . . 5 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ↔ (𝐴𝐵𝐶𝐵𝑋𝐵)))
3726, 33oveq12d 6567 . . . . . . . 8 (𝜑 → ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) = (𝐴𝐼𝐶))
3837eleq2d 2673 . . . . . . 7 (𝜑 → (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ↔ 𝑥 ∈ (𝐴𝐼𝐶)))
3929eqeq2d 2620 . . . . . . . 8 (𝜑 → (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ 𝑥 = 𝐵))
4029fveq2d 6107 . . . . . . . . 9 (𝜑 → (𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1)) = (𝐾𝐵))
4140breqd 4594 . . . . . . . 8 (𝜑 → (𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋𝑥(𝐾𝐵)𝑋))
4239, 41orbi12d 742 . . . . . . 7 (𝜑 → ((𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
4338, 42anbi12d 743 . . . . . 6 (𝜑 → ((𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4443rexbidv 3034 . . . . 5 (𝜑 → (∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)) ↔ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
4536, 44anbi12d 743 . . . 4 (𝜑 → ((((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋))) ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
4623, 45anbi12d 743 . . 3 (𝜑 → (((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ (((⟨“𝐴𝐵𝐶”⟩‘0) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ (⟨“𝐴𝐵𝐶”⟩‘2) ≠ (⟨“𝐴𝐵𝐶”⟩‘1) ∧ 𝑋 ≠ (⟨“𝐴𝐵𝐶”⟩‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((⟨“𝐴𝐵𝐶”⟩‘0)𝐼(⟨“𝐴𝐵𝐶”⟩‘2)) ∧ (𝑥 = (⟨“𝐴𝐵𝐶”⟩‘1) ∨ 𝑥(𝐾‘(⟨“𝐴𝐵𝐶”⟩‘1))𝑋)))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
4722, 46bitrd 267 . 2 (𝜑 → (𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩ ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
48 isinag.g . . . 4 (𝜑𝐺𝑉)
49 elex 3185 . . . 4 (𝐺𝑉𝐺 ∈ V)
50 fveq2 6103 . . . . . . . . . 10 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
51 isinag.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
5250, 51syl6eqr 2662 . . . . . . . . 9 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
5352eleq2d 2673 . . . . . . . 8 (𝑔 = 𝐺 → (𝑝 ∈ (Base‘𝑔) ↔ 𝑝𝑃))
5452oveq1d 6564 . . . . . . . . 9 (𝑔 = 𝐺 → ((Base‘𝑔) ↑𝑚 (0..^3)) = (𝑃𝑚 (0..^3)))
5554eleq2d 2673 . . . . . . . 8 (𝑔 = 𝐺 → (𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ↔ 𝑡 ∈ (𝑃𝑚 (0..^3))))
5653, 55anbi12d 743 . . . . . . 7 (𝑔 = 𝐺 → ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ↔ (𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3)))))
57 fveq2 6103 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺))
58 isinag.i . . . . . . . . . . . . 13 𝐼 = (Itv‘𝐺)
5957, 58syl6eqr 2662 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼)
6059oveqd 6566 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) = ((𝑡‘0)𝐼(𝑡‘2)))
6160eleq2d 2673 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ↔ 𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2))))
62 fveq2 6103 . . . . . . . . . . . . . 14 (𝑔 = 𝐺 → (hlG‘𝑔) = (hlG‘𝐺))
63 isinag.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
6462, 63syl6eqr 2662 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (hlG‘𝑔) = 𝐾)
6564fveq1d 6105 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((hlG‘𝑔)‘(𝑡‘1)) = (𝐾‘(𝑡‘1)))
6665breqd 4594 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝𝑥(𝐾‘(𝑡‘1))𝑝))
6766orbi2d 734 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) ↔ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))
6861, 67anbi12d 743 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
6952, 68rexeqbidv 3130 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))
7069anbi2d 736 . . . . . . 7 (𝑔 = 𝐺 → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) ↔ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))))
7156, 70anbi12d 743 . . . . . 6 (𝑔 = 𝐺 → (((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) ↔ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))))
7271opabbidv 4648 . . . . 5 (𝑔 = 𝐺 → {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
73 df-inag 25528 . . . . 5 inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
74 fvex 6113 . . . . . . . 8 (Base‘𝐺) ∈ V
7551, 74eqeltri 2684 . . . . . . 7 𝑃 ∈ V
76 ovex 6577 . . . . . . 7 (𝑃𝑚 (0..^3)) ∈ V
7775, 76xpex 6860 . . . . . 6 (𝑃 × (𝑃𝑚 (0..^3))) ∈ V
78 opabssxp 5116 . . . . . 6 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ⊆ (𝑃 × (𝑃𝑚 (0..^3)))
7977, 78ssexi 4731 . . . . 5 {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ∈ V
8072, 73, 79fvmpt 6191 . . . 4 (𝐺 ∈ V → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
8148, 49, 803syl 18 . . 3 (𝜑 → (inA‘𝐺) = {⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))})
8281breqd 4594 . 2 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ 𝑋{⟨𝑝, 𝑡⟩ ∣ ((𝑝𝑃𝑡 ∈ (𝑃𝑚 (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}⟨“𝐴𝐵𝐶”⟩))
83 isinag.x . . . 4 (𝜑𝑋𝑃)
8424, 27, 31s3cld 13467 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
85 s3len 13489 . . . . . . 7 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
8685a1i 11 . . . . . 6 (𝜑 → (#‘⟨“𝐴𝐵𝐶”⟩) = 3)
8784, 86jca 553 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3))
88 3nn0 11187 . . . . . 6 3 ∈ ℕ0
89 wrdmap 13191 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
9075, 88, 89mp2an 704 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9187, 90sylib 207 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
9283, 91jca 553 . . 3 (𝜑 → (𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
9392biantrurd 528 . 2 (𝜑 → (((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) ↔ ((𝑋𝑃 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))))
9447, 82, 933bitr4d 299 1 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  Vcvv 3173   class class class wbr 4583  {copab 4642   × cxp 5036  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  0cc0 9815  1c1 9816  2c2 10947  3c3 10948  0cn0 11169  ..^cfzo 12334  #chash 12979  Word cword 13146  ⟨“cs3 13438  Basecbs 15695  Itvcitv 25135  hlGchlg 25295  inAcinag 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-inag 25528
This theorem is referenced by:  inagswap  25530  inaghl  25531
  Copyright terms: Public domain W3C validator