Step | Hyp | Ref
| Expression |
1 | | simpr 476 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → 𝑡 = 〈“𝐴𝐵𝐶”〉) |
2 | 1 | fveq1d 6105 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑡‘0) = (〈“𝐴𝐵𝐶”〉‘0)) |
3 | 1 | fveq1d 6105 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑡‘1) = (〈“𝐴𝐵𝐶”〉‘1)) |
4 | 2, 3 | neeq12d 2843 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑡‘0) ≠ (𝑡‘1) ↔ (〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1))) |
5 | 1 | fveq1d 6105 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑡‘2) = (〈“𝐴𝐵𝐶”〉‘2)) |
6 | 5, 3 | neeq12d 2843 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑡‘2) ≠ (𝑡‘1) ↔ (〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1))) |
7 | | simpl 472 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → 𝑝 = 𝑋) |
8 | 7, 3 | neeq12d 2843 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑝 ≠ (𝑡‘1) ↔ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1))) |
9 | 4, 6, 8 | 3anbi123d 1391 |
. . . . . 6
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ↔ ((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)))) |
10 | | eqidd 2611 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → 𝑥 = 𝑥) |
11 | 2, 5 | oveq12d 6567 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑡‘0)𝐼(𝑡‘2)) = ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2))) |
12 | 10, 11 | eleq12d 2682 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ↔ 𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)))) |
13 | 10, 3 | eqeq12d 2625 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑥 = (𝑡‘1) ↔ 𝑥 = (〈“𝐴𝐵𝐶”〉‘1))) |
14 | 3 | fveq2d 6107 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝐾‘(𝑡‘1)) = (𝐾‘(〈“𝐴𝐵𝐶”〉‘1))) |
15 | 10, 14, 7 | breq123d 4597 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (𝑥(𝐾‘(𝑡‘1))𝑝 ↔ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)) |
16 | 13, 15 | orbi12d 742 |
. . . . . . . 8
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝) ↔ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))) |
17 | 12, 16 | anbi12d 743 |
. . . . . . 7
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)))) |
18 | 17 | rexbidv 3034 |
. . . . . 6
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → (∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)))) |
19 | 9, 18 | anbi12d 743 |
. . . . 5
⊢ ((𝑝 = 𝑋 ∧ 𝑡 = 〈“𝐴𝐵𝐶”〉) → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) ↔ (((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))))) |
20 | | eqid 2610 |
. . . . 5
⊢
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} = {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} |
21 | 19, 20 | brab2a 5091 |
. . . 4
⊢ (𝑋{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}〈“𝐴𝐵𝐶”〉 ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))))) |
22 | 21 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑋{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}〈“𝐴𝐵𝐶”〉 ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)))))) |
23 | | biidd 251 |
. . . 4
⊢ (𝜑 → ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚 (0..^3))) ↔
(𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚
(0..^3))))) |
24 | | isinag.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
25 | | s3fv0 13486 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) |
27 | | isinag.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
28 | | s3fv1 13487 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) |
30 | 26, 29 | neeq12d 2843 |
. . . . . 6
⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ↔ 𝐴 ≠ 𝐵)) |
31 | | isinag.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
32 | | s3fv2 13488 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑃 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) |
34 | 33, 29 | neeq12d 2843 |
. . . . . 6
⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ↔ 𝐶 ≠ 𝐵)) |
35 | 29 | neeq2d 2842 |
. . . . . 6
⊢ (𝜑 → (𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1) ↔ 𝑋 ≠ 𝐵)) |
36 | 30, 34, 35 | 3anbi123d 1391 |
. . . . 5
⊢ (𝜑 → (((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ↔ (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵))) |
37 | 26, 33 | oveq12d 6567 |
. . . . . . . 8
⊢ (𝜑 → ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) = (𝐴𝐼𝐶)) |
38 | 37 | eleq2d 2673 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ↔ 𝑥 ∈ (𝐴𝐼𝐶))) |
39 | 29 | eqeq2d 2620 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ↔ 𝑥 = 𝐵)) |
40 | 29 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘(〈“𝐴𝐵𝐶”〉‘1)) = (𝐾‘𝐵)) |
41 | 40 | breqd 4594 |
. . . . . . . 8
⊢ (𝜑 → (𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋 ↔ 𝑥(𝐾‘𝐵)𝑋)) |
42 | 39, 41 | orbi12d 742 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋) ↔ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
43 | 38, 42 | anbi12d 743 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)) ↔ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
44 | 43 | rexbidv 3034 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
45 | 36, 44 | anbi12d 743 |
. . . 4
⊢ (𝜑 → ((((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋))) ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
46 | 23, 45 | anbi12d 743 |
. . 3
⊢ (𝜑 → (((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((〈“𝐴𝐵𝐶”〉‘0) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧
(〈“𝐴𝐵𝐶”〉‘2) ≠
(〈“𝐴𝐵𝐶”〉‘1) ∧ 𝑋 ≠ (〈“𝐴𝐵𝐶”〉‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((〈“𝐴𝐵𝐶”〉‘0)𝐼(〈“𝐴𝐵𝐶”〉‘2)) ∧ (𝑥 = (〈“𝐴𝐵𝐶”〉‘1) ∨ 𝑥(𝐾‘(〈“𝐴𝐵𝐶”〉‘1))𝑋)))) ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))))) |
47 | 22, 46 | bitrd 267 |
. 2
⊢ (𝜑 → (𝑋{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}〈“𝐴𝐵𝐶”〉 ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))))) |
48 | | isinag.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
49 | | elex 3185 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
50 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
51 | | isinag.p |
. . . . . . . . . 10
⊢ 𝑃 = (Base‘𝐺) |
52 | 50, 51 | syl6eqr 2662 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
53 | 52 | eleq2d 2673 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑝 ∈ (Base‘𝑔) ↔ 𝑝 ∈ 𝑃)) |
54 | 52 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((Base‘𝑔) ↑𝑚 (0..^3)) =
(𝑃
↑𝑚 (0..^3))) |
55 | 54 | eleq2d 2673 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ↔
𝑡 ∈ (𝑃 ↑𝑚
(0..^3)))) |
56 | 53, 55 | anbi12d 743 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ↔
(𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚
(0..^3))))) |
57 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = (Itv‘𝐺)) |
58 | | isinag.i |
. . . . . . . . . . . . 13
⊢ 𝐼 = (Itv‘𝐺) |
59 | 57, 58 | syl6eqr 2662 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (Itv‘𝑔) = 𝐼) |
60 | 59 | oveqd 6566 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) = ((𝑡‘0)𝐼(𝑡‘2))) |
61 | 60 | eleq2d 2673 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ↔ 𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)))) |
62 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝐺 → (hlG‘𝑔) = (hlG‘𝐺)) |
63 | | isinag.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (hlG‘𝐺) |
64 | 62, 63 | syl6eqr 2662 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝐺 → (hlG‘𝑔) = 𝐾) |
65 | 64 | fveq1d 6105 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → ((hlG‘𝑔)‘(𝑡‘1)) = (𝐾‘(𝑡‘1))) |
66 | 65 | breqd 4594 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝 ↔ 𝑥(𝐾‘(𝑡‘1))𝑝)) |
67 | 66 | orbi2d 734 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → ((𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝) ↔ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))) |
68 | 61, 67 | anbi12d 743 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))) |
69 | 52, 68 | rexeqbidv 3130 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)) ↔ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))) |
70 | 69 | anbi2d 736 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))) ↔ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))) |
71 | 56, 70 | anbi12d 743 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝)))) ↔ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝)))))) |
72 | 71 | opabbidv 4648 |
. . . . 5
⊢ (𝑔 = 𝐺 → {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))} = {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}) |
73 | | df-inag 25528 |
. . . . 5
⊢ inA =
(𝑔 ∈ V ↦
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) |
74 | | fvex 6113 |
. . . . . . . 8
⊢
(Base‘𝐺)
∈ V |
75 | 51, 74 | eqeltri 2684 |
. . . . . . 7
⊢ 𝑃 ∈ V |
76 | | ovex 6577 |
. . . . . . 7
⊢ (𝑃 ↑𝑚
(0..^3)) ∈ V |
77 | 75, 76 | xpex 6860 |
. . . . . 6
⊢ (𝑃 × (𝑃 ↑𝑚 (0..^3))) ∈
V |
78 | | opabssxp 5116 |
. . . . . 6
⊢
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ⊆ (𝑃 × (𝑃 ↑𝑚
(0..^3))) |
79 | 77, 78 | ssexi 4731 |
. . . . 5
⊢
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))} ∈ V |
80 | 72, 73, 79 | fvmpt 6191 |
. . . 4
⊢ (𝐺 ∈ V →
(inA‘𝐺) =
{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}) |
81 | 48, 49, 80 | 3syl 18 |
. . 3
⊢ (𝜑 → (inA‘𝐺) = {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}) |
82 | 81 | breqd 4594 |
. 2
⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ 𝑋{〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ 𝑃 ∧ 𝑡 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
(((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ ((𝑡‘0)𝐼(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥(𝐾‘(𝑡‘1))𝑝))))}〈“𝐴𝐵𝐶”〉)) |
83 | | isinag.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
84 | 24, 27, 31 | s3cld 13467 |
. . . . . 6
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) |
85 | | s3len 13489 |
. . . . . . 7
⊢
(#‘〈“𝐴𝐵𝐶”〉) = 3 |
86 | 85 | a1i 11 |
. . . . . 6
⊢ (𝜑 →
(#‘〈“𝐴𝐵𝐶”〉) = 3) |
87 | 84, 86 | jca 553 |
. . . . 5
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ (#‘〈“𝐴𝐵𝐶”〉) = 3)) |
88 | | 3nn0 11187 |
. . . . . 6
⊢ 3 ∈
ℕ0 |
89 | | wrdmap 13191 |
. . . . . 6
⊢ ((𝑃 ∈ V ∧ 3 ∈
ℕ0) → ((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ (#‘〈“𝐴𝐵𝐶”〉) = 3) ↔
〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚
(0..^3)))) |
90 | 75, 88, 89 | mp2an 704 |
. . . . 5
⊢
((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ (#‘〈“𝐴𝐵𝐶”〉) = 3) ↔
〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚
(0..^3))) |
91 | 87, 90 | sylib 207 |
. . . 4
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚
(0..^3))) |
92 | 83, 91 | jca 553 |
. . 3
⊢ (𝜑 → (𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚
(0..^3)))) |
93 | 92 | biantrurd 528 |
. 2
⊢ (𝜑 → (((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) ↔ ((𝑋 ∈ 𝑃 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝑃 ↑𝑚 (0..^3))) ∧
((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))))) |
94 | 47, 82, 93 | 3bitr4d 299 |
1
⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |