Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishil | Structured version Visualization version GIF version |
Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.) |
Ref | Expression |
---|---|
ishil.k | ⊢ 𝐾 = (proj‘𝐻) |
ishil.c | ⊢ 𝐶 = (CSubSp‘𝐻) |
Ref | Expression |
---|---|
ishil | ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . . . 5 ⊢ (ℎ = 𝐻 → (proj‘ℎ) = (proj‘𝐻)) | |
2 | ishil.k | . . . . 5 ⊢ 𝐾 = (proj‘𝐻) | |
3 | 1, 2 | syl6eqr 2662 | . . . 4 ⊢ (ℎ = 𝐻 → (proj‘ℎ) = 𝐾) |
4 | 3 | dmeqd 5248 | . . 3 ⊢ (ℎ = 𝐻 → dom (proj‘ℎ) = dom 𝐾) |
5 | fveq2 6103 | . . . 4 ⊢ (ℎ = 𝐻 → (CSubSp‘ℎ) = (CSubSp‘𝐻)) | |
6 | ishil.c | . . . 4 ⊢ 𝐶 = (CSubSp‘𝐻) | |
7 | 5, 6 | syl6eqr 2662 | . . 3 ⊢ (ℎ = 𝐻 → (CSubSp‘ℎ) = 𝐶) |
8 | 4, 7 | eqeq12d 2625 | . 2 ⊢ (ℎ = 𝐻 → (dom (proj‘ℎ) = (CSubSp‘ℎ) ↔ dom 𝐾 = 𝐶)) |
9 | df-hil 19867 | . 2 ⊢ Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (CSubSp‘ℎ)} | |
10 | 8, 9 | elrab2 3333 | 1 ⊢ (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 dom cdm 5038 ‘cfv 5804 PreHilcphl 19788 CSubSpccss 19824 projcpj 19863 Hilchs 19864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-dm 5048 df-iota 5768 df-fv 5812 df-hil 19867 |
This theorem is referenced by: ishil2 19882 hlhil 23022 |
Copyright terms: Public domain | W3C validator |