Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpde Structured version   Visualization version   GIF version

Theorem isgrpde 17266
 Description: Deduce a group from its properties. In this version of isgrpd 17267, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b (𝜑𝐵 = (Base‘𝐺))
isgrpd.p (𝜑+ = (+g𝐺))
isgrpd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpd.z (𝜑0𝐵)
isgrpd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
isgrpde.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpde (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧

Proof of Theorem isgrpde
StepHypRef Expression
1 isgrpd.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd.z . . 3 (𝜑0𝐵)
4 isgrpd.i . . 3 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5 isgrpd.c . . . 4 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
6 isgrpd.a . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
7 isgrpde.n . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
85, 3, 4, 6, 7grpridd 6772 . . 3 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
91, 2, 3, 4, 8grpidd 17091 . 2 (𝜑0 = (0g𝐺))
101, 2, 5, 6, 3, 4, 8ismndd 17136 . 2 (𝜑𝐺 ∈ Mnd)
111, 2, 9, 10, 7isgrpd2e 17264 1 (𝜑𝐺 ∈ Grp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248 This theorem is referenced by:  isgrpd  17267  dfgrp2  17270  imasgrp2  17353  unitgrp  18490
 Copyright terms: Public domain W3C validator