Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isgboa | Structured version Visualization version GIF version |
Description: The predicate "is an odd Goldbach number". An odd Goldbach number is an odd number integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
isgboa | ⊢ (𝑍 ∈ GoldbachOddALTV ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2614 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |
2 | 1 | anbi2d 736 | . . . 4 ⊢ (𝑧 = 𝑍 → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
3 | 2 | rexbidv 3034 | . . 3 ⊢ (𝑧 = 𝑍 → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
4 | 3 | 2rexbidv 3039 | . 2 ⊢ (𝑧 = 𝑍 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟)) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
5 | df-gboa 40172 | . 2 ⊢ GoldbachOddALTV = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} | |
6 | 4, 5 | elrab2 3333 | 1 ⊢ (𝑍 ∈ GoldbachOddALTV ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 (class class class)co 6549 + caddc 9818 ℙcprime 15223 Odd codd 40076 GoldbachOddALTV cgboa 40169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-gboa 40172 |
This theorem is referenced by: gboagbo 40178 gboage9 40186 9gboa 40196 11gboa 40197 bgoldbst 40200 nnsum4primesoddALTV 40213 bgoldbtbnd 40225 |
Copyright terms: Public domain | W3C validator |