Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem1 Structured version   Visualization version   GIF version

Theorem isf32lem1 9058
 Description: Lemma for isfin3-2 9072. Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
21sseq1d 3595 . . . 4 (𝑎 = 𝐵 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹𝐵) ⊆ (𝐹𝐵)))
32imbi2d 329 . . 3 (𝑎 = 𝐵 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹𝐵) ⊆ (𝐹𝐵))))
4 fveq2 6103 . . . . 5 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54sseq1d 3595 . . . 4 (𝑎 = 𝑏 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹𝑏) ⊆ (𝐹𝐵)))
65imbi2d 329 . . 3 (𝑎 = 𝑏 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹𝑏) ⊆ (𝐹𝐵))))
7 fveq2 6103 . . . . 5 (𝑎 = suc 𝑏 → (𝐹𝑎) = (𝐹‘suc 𝑏))
87sseq1d 3595 . . . 4 (𝑎 = suc 𝑏 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹‘suc 𝑏) ⊆ (𝐹𝐵)))
98imbi2d 329 . . 3 (𝑎 = suc 𝑏 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵))))
10 fveq2 6103 . . . . 5 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
1110sseq1d 3595 . . . 4 (𝑎 = 𝐴 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 329 . . 3 (𝑎 = 𝐴 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3587 . . . 4 (𝐹𝐵) ⊆ (𝐹𝐵)
14132a1i 12 . . 3 (𝐵 ∈ ω → (𝜑 → (𝐹𝐵) ⊆ (𝐹𝐵)))
15 isf32lem.b . . . . . . 7 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
16 suceq 5707 . . . . . . . . . 10 (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏)
1716fveq2d 6107 . . . . . . . . 9 (𝑥 = 𝑏 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑏))
18 fveq2 6103 . . . . . . . . 9 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
1917, 18sseq12d 3597 . . . . . . . 8 (𝑥 = 𝑏 → ((𝐹‘suc 𝑥) ⊆ (𝐹𝑥) ↔ (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
2019rspcv 3278 . . . . . . 7 (𝑏 ∈ ω → (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥) → (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
2115, 20syl5 33 . . . . . 6 (𝑏 ∈ ω → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
2221ad2antrr 758 . . . . 5 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
23 sstr2 3575 . . . . 5 ((𝐹‘suc 𝑏) ⊆ (𝐹𝑏) → ((𝐹𝑏) ⊆ (𝐹𝐵) → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵)))
2422, 23syl6 34 . . . 4 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (𝜑 → ((𝐹𝑏) ⊆ (𝐹𝐵) → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵))))
2524a2d 29 . . 3 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → ((𝜑 → (𝐹𝑏) ⊆ (𝐹𝐵)) → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵))))
263, 6, 9, 12, 14, 25findsg 6985 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝜑 → (𝐹𝐴) ⊆ (𝐹𝐵)))
2726impr 647 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  𝒫 cpw 4108  ∩ cint 4410  ran crn 5039  suc csuc 5642  ⟶wf 5800  ‘cfv 5804  ωcom 6957 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fv 5812  df-om 6958 This theorem is referenced by:  isf32lem2  9059  isf32lem3  9060
 Copyright terms: Public domain W3C validator