Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrs Structured version   Visualization version   GIF version

Theorem isdrs 16757
 Description: Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isdrs.b 𝐵 = (Base‘𝐾)
isdrs.l = (le‘𝐾)
Assertion
Ref Expression
isdrs (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdrs
Dummy variables 𝑓 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
2 isdrs.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2syl6eqr 2662 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐵)
4 fveq2 6103 . . . . . . 7 (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾))
5 isdrs.l . . . . . . 7 = (le‘𝐾)
64, 5syl6eqr 2662 . . . . . 6 (𝑓 = 𝐾 → (le‘𝑓) = )
76sbceq1d 3407 . . . . 5 (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
83, 7sbceqbid 3409 . . . 4 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ [𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))))
9 fvex 6113 . . . . . 6 (Base‘𝐾) ∈ V
102, 9eqeltri 2684 . . . . 5 𝐵 ∈ V
11 fvex 6113 . . . . . 6 (le‘𝐾) ∈ V
125, 11eqeltri 2684 . . . . 5 ∈ V
13 neeq1 2844 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
1413adantr 480 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
15 rexeq 3116 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1615raleqbi1dv 3123 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
1716raleqbi1dv 3123 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧)))
18 breq 4585 . . . . . . . . . 10 (𝑟 = → (𝑥𝑟𝑧𝑥 𝑧))
19 breq 4585 . . . . . . . . . 10 (𝑟 = → (𝑦𝑟𝑧𝑦 𝑧))
2018, 19anbi12d 743 . . . . . . . . 9 (𝑟 = → ((𝑥𝑟𝑧𝑦𝑟𝑧) ↔ (𝑥 𝑧𝑦 𝑧)))
2120rexbidv 3034 . . . . . . . 8 (𝑟 = → (∃𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∃𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
22212ralbidv 2972 . . . . . . 7 (𝑟 = → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2317, 22sylan9bb 732 . . . . . 6 ((𝑏 = 𝐵𝑟 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
2414, 23anbi12d 743 . . . . 5 ((𝑏 = 𝐵𝑟 = ) → ((𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
2510, 12, 24sbc2ie 3472 . . . 4 ([𝐵 / 𝑏][ / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
268, 25syl6bb 275 . . 3 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)) ↔ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
27 df-drs 16752 . . 3 Dirset = {𝑓 ∈ Preset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
2826, 27elrab2 3333 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
29 3anass 1035 . 2 ((𝐾 ∈ Preset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)) ↔ (𝐾 ∈ Preset ∧ (𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧))))
3028, 29bitr4i 266 1 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑧𝑦 𝑧)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173  [wsbc 3402  ∅c0 3874   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775   Preset cpreset 16749  Dirsetcdrs 16750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-drs 16752 This theorem is referenced by:  drsdir  16758  drsprs  16759  drsbn0  16760  isdrs2  16762  isipodrs  16984
 Copyright terms: Public domain W3C validator