MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngd Structured version   Visualization version   GIF version

Theorem isdrngd 18595
Description: Properties that determine a division ring. 𝐼 (reciprocal) is normally dependent on 𝑥 i.e. read it as 𝐼(𝑥)." (Contributed by NM, 2-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b (𝜑𝐵 = (Base‘𝑅))
isdrngd.t (𝜑· = (.r𝑅))
isdrngd.z (𝜑0 = (0g𝑅))
isdrngd.u (𝜑1 = (1r𝑅))
isdrngd.r (𝜑𝑅 ∈ Ring)
isdrngd.n ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
isdrngd.o (𝜑10 )
isdrngd.i ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
isdrngd.j ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
isdrngd.k ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
Assertion
Ref Expression
isdrngd (𝜑𝑅 ∈ DivRing)
Distinct variable groups:   𝑥,𝑦, 0   𝑥, 1 ,𝑦   𝑥,𝐵,𝑦   𝑦,𝐼   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥, · ,𝑦
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem isdrngd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 isdrngd.r . . 3 (𝜑𝑅 ∈ Ring)
2 difss 3699 . . . . . 6 (𝐵 ∖ { 0 }) ⊆ 𝐵
3 isdrngd.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
42, 3syl5sseq 3616 . . . . 5 (𝜑 → (𝐵 ∖ { 0 }) ⊆ (Base‘𝑅))
5 eqid 2610 . . . . . 6 ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))
6 eqid 2610 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 eqid 2610 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
86, 7mgpbas 18318 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
95, 8ressbas2 15758 . . . . 5 ((𝐵 ∖ { 0 }) ⊆ (Base‘𝑅) → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
104, 9syl 17 . . . 4 (𝜑 → (𝐵 ∖ { 0 }) = (Base‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
11 isdrngd.t . . . . 5 (𝜑· = (.r𝑅))
12 fvex 6113 . . . . . . 7 (Base‘𝑅) ∈ V
133, 12syl6eqel 2696 . . . . . 6 (𝜑𝐵 ∈ V)
14 difexg 4735 . . . . . 6 (𝐵 ∈ V → (𝐵 ∖ { 0 }) ∈ V)
15 eqid 2610 . . . . . . . 8 (.r𝑅) = (.r𝑅)
166, 15mgpplusg 18316 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
175, 16ressplusg 15818 . . . . . 6 ((𝐵 ∖ { 0 }) ∈ V → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1813, 14, 173syl 18 . . . . 5 (𝜑 → (.r𝑅) = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
1911, 18eqtrd 2644 . . . 4 (𝜑· = (+g‘((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))))
20 eldifsn 4260 . . . . 5 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
21 eldifsn 4260 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
227, 15ringcl 18384 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
231, 22syl3an1 1351 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅))
24233expib 1260 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
253eleq2d 2673 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
263eleq2d 2673 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝑅)))
2725, 26anbi12d 743 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐵𝑦𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2811oveqd 6566 . . . . . . . . . . . 12 (𝜑 → (𝑥 · 𝑦) = (𝑥(.r𝑅)𝑦))
2928, 3eleq12d 2682 . . . . . . . . . . 11 (𝜑 → ((𝑥 · 𝑦) ∈ 𝐵 ↔ (𝑥(.r𝑅)𝑦) ∈ (Base‘𝑅)))
3024, 27, 293imtr4d 282 . . . . . . . . . 10 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵))
31303impib 1254 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
32313adant2r 1313 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
33323adant3r 1315 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ 𝐵)
34 isdrngd.n . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )
35 eldifsn 4260 . . . . . . 7 ((𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥 · 𝑦) ∈ 𝐵 ∧ (𝑥 · 𝑦) ≠ 0 ))
3633, 34, 35sylanbrc 695 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3721, 36syl3an3b 1356 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
3820, 37syl3an2b 1355 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥 · 𝑦) ∈ (𝐵 ∖ { 0 }))
39 eldifi 3694 . . . . . 6 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
40 eldifi 3694 . . . . . 6 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
41 eldifi 3694 . . . . . 6 (𝑧 ∈ (𝐵 ∖ { 0 }) → 𝑧𝐵)
4239, 40, 413anim123i 1240 . . . . 5 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 })) → (𝑥𝐵𝑦𝐵𝑧𝐵))
437, 15ringass 18387 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
4443ex 449 . . . . . . . 8 (𝑅 ∈ Ring → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
451, 44syl 17 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
463eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑧𝐵𝑧 ∈ (Base‘𝑅)))
4725, 26, 463anbi123d 1391 . . . . . . 7 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))))
48 eqidd 2611 . . . . . . . . 9 (𝜑𝑧 = 𝑧)
4911, 28, 48oveq123d 6570 . . . . . . . 8 (𝜑 → ((𝑥 · 𝑦) · 𝑧) = ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧))
50 eqidd 2611 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
5111oveqd 6566 . . . . . . . . 9 (𝜑 → (𝑦 · 𝑧) = (𝑦(.r𝑅)𝑧))
5211, 50, 51oveq123d 6570 . . . . . . . 8 (𝜑 → (𝑥 · (𝑦 · 𝑧)) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧)))
5349, 52eqeq12d 2625 . . . . . . 7 (𝜑 → (((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)) ↔ ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑧) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑧))))
5445, 47, 533imtr4d 282 . . . . . 6 (𝜑 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))))
5554imp 444 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
5642, 55sylan2 490 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 }))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
57 eqid 2610 . . . . . . . 8 (1r𝑅) = (1r𝑅)
587, 57ringidcl 18391 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
591, 58syl 17 . . . . . 6 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
60 isdrngd.u . . . . . 6 (𝜑1 = (1r𝑅))
6159, 60, 33eltr4d 2703 . . . . 5 (𝜑1𝐵)
62 isdrngd.o . . . . 5 (𝜑10 )
63 eldifsn 4260 . . . . 5 ( 1 ∈ (𝐵 ∖ { 0 }) ↔ ( 1𝐵10 ))
6461, 62, 63sylanbrc 695 . . . 4 (𝜑1 ∈ (𝐵 ∖ { 0 }))
657, 15, 57ringlidm 18394 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥)
6665ex 449 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
671, 66syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
6811, 60, 50oveq123d 6570 . . . . . . . . 9 (𝜑 → ( 1 · 𝑥) = ((1r𝑅)(.r𝑅)𝑥))
6968eqeq1d 2612 . . . . . . . 8 (𝜑 → (( 1 · 𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑅)𝑥) = 𝑥))
7067, 25, 693imtr4d 282 . . . . . . 7 (𝜑 → (𝑥𝐵 → ( 1 · 𝑥) = 𝑥))
7170imp 444 . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
7271adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → ( 1 · 𝑥) = 𝑥)
7320, 72sylan2b 491 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → ( 1 · 𝑥) = 𝑥)
74 isdrngd.i . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)
75 isdrngd.j . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )
76 eldifsn 4260 . . . . . 6 (𝐼 ∈ (𝐵 ∖ { 0 }) ↔ (𝐼𝐵𝐼0 ))
7774, 75, 76sylanbrc 695 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼 ∈ (𝐵 ∖ { 0 }))
7820, 77sylan2b 491 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → 𝐼 ∈ (𝐵 ∖ { 0 }))
79 isdrngd.k . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )
8020, 79sylan2b 491 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐼 · 𝑥) = 1 )
8110, 19, 38, 56, 64, 73, 78, 80isgrpd 17267 . . 3 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp)
82 isdrngd.z . . . . . . . 8 (𝜑0 = (0g𝑅))
8382sneqd 4137 . . . . . . 7 (𝜑 → { 0 } = {(0g𝑅)})
843, 83difeq12d 3691 . . . . . 6 (𝜑 → (𝐵 ∖ { 0 }) = ((Base‘𝑅) ∖ {(0g𝑅)}))
8584oveq2d 6565 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
8685eleq1d 2672 . . . 4 (𝜑 → (((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp ↔ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
8786anbi2d 736 . . 3 (𝜑 → ((𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 })) ∈ Grp) ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)))
881, 81, 87mpbi2and 958 . 2 (𝜑 → (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
89 eqid 2610 . . 3 (0g𝑅) = (0g𝑅)
90 eqid 2610 . . 3 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
917, 89, 90isdrng2 18580 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp))
9288, 91sylibr 223 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  wss 3540  {csn 4125  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Grpcgrp 17245  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  DivRingcdr 18570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572
This theorem is referenced by:  isdrngrd  18596  cndrng  19594  erngdvlem4  35297
  Copyright terms: Public domain W3C validator