Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscusp2 | Structured version Visualization version GIF version |
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
Ref | Expression |
---|---|
iscusp2.1 | ⊢ 𝐵 = (Base‘𝑊) |
iscusp2.2 | ⊢ 𝑈 = (UnifSt‘𝑊) |
iscusp2.3 | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
iscusp2 | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp 21913 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
2 | iscusp2.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fveq2i 6106 | . . . 4 ⊢ (Fil‘𝐵) = (Fil‘(Base‘𝑊)) |
4 | iscusp2.2 | . . . . . . 7 ⊢ 𝑈 = (UnifSt‘𝑊) | |
5 | 4 | fveq2i 6106 | . . . . . 6 ⊢ (CauFilu‘𝑈) = (CauFilu‘(UnifSt‘𝑊)) |
6 | 5 | eleq2i 2680 | . . . . 5 ⊢ (𝑐 ∈ (CauFilu‘𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊))) |
7 | iscusp2.3 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑊) | |
8 | 7 | oveq1i 6559 | . . . . . 6 ⊢ (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐) |
9 | 8 | neeq1i 2846 | . . . . 5 ⊢ ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) |
10 | 6, 9 | imbi12i 339 | . . . 4 ⊢ ((𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
11 | 3, 10 | raleqbii 2973 | . . 3 ⊢ (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
12 | 11 | anbi2i 726 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
13 | 1, 12 | bitr4i 266 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∅c0 3874 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 TopOpenctopn 15905 Filcfil 21459 fLim cflim 21548 UnifStcuss 21867 UnifSpcusp 21868 CauFiluccfilu 21900 CUnifSpccusp 21911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 df-cusp 21912 |
This theorem is referenced by: cmetcusp1 22957 |
Copyright terms: Public domain | W3C validator |