Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscusgrvtx Structured version   Visualization version   GIF version

Theorem iscusgrvtx 40643
 Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscusgrvtx (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉

Proof of Theorem iscusgrvtx
StepHypRef Expression
1 iscusgr 40640 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
2 iscusgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
32iscplgr 40636 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
43pm5.32i 667 . 2 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
51, 4bitri 263 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ‘cfv 5804  Vtxcvtx 25673   USGraph cusgr 40379  UnivVtxcuvtxa 40551  ComplGraphccplgr 40552  ComplUSGraphccusgr 40553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-cplgr 40557  df-cusgr 40558 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator