Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscusgrvtx | Structured version Visualization version GIF version |
Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
iscusgrvtx | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 40640 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | iscusgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | iscplgr 40636 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
4 | 3 | pm5.32i 667 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
5 | 1, 4 | bitri 263 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ‘cfv 5804 Vtxcvtx 25673 USGraph cusgr 40379 UnivVtxcuvtxa 40551 ComplGraphccplgr 40552 ComplUSGraphccusgr 40553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-cplgr 40557 df-cusgr 40558 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |