Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscref Structured version   Visualization version   GIF version

Theorem iscref 29239
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypothesis
Ref Expression
iscref.x 𝑋 = 𝐽
Assertion
Ref Expression
iscref (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem iscref
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 pweq 4111 . . 3 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽)
2 unieq 4380 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
3 iscref.x . . . . . 6 𝑋 = 𝐽
42, 3syl6eqr 2662 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
54eqeq1d 2612 . . . 4 (𝑗 = 𝐽 → ( 𝑗 = 𝑦𝑋 = 𝑦))
61ineq1d 3775 . . . . 5 (𝑗 = 𝐽 → (𝒫 𝑗𝐴) = (𝒫 𝐽𝐴))
76rexeqdv 3122 . . . 4 (𝑗 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
85, 7imbi12d 333 . . 3 (𝑗 = 𝐽 → (( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
91, 8raleqbidv 3129 . 2 (𝑗 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
10 df-cref 29238 . 2 CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦)}
119, 10elrab2 3333 1 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  Topctop 20517  Refcref 21115  CovHasRefccref 29237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-in 3547  df-ss 3554  df-pw 4110  df-uni 4373  df-cref 29238
This theorem is referenced by:  creftop  29241  crefi  29242  crefss  29244  cmpcref  29245  cmppcmp  29253  dispcmp  29254  pcmplfin  29255
  Copyright terms: Public domain W3C validator