Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscref | Structured version Visualization version GIF version |
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
iscref.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscref | ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4111 | . . 3 ⊢ (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽) | |
2 | unieq 4380 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | iscref.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | syl6eqr 2662 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
5 | 4 | eqeq1d 2612 | . . . 4 ⊢ (𝑗 = 𝐽 → (∪ 𝑗 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
6 | 1 | ineq1d 3775 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝒫 𝑗 ∩ 𝐴) = (𝒫 𝐽 ∩ 𝐴)) |
7 | 6 | rexeqdv 3122 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
8 | 5, 7 | imbi12d 333 | . . 3 ⊢ (𝑗 = 𝐽 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
9 | 1, 8 | raleqbidv 3129 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
10 | df-cref 29238 | . 2 ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | |
11 | 9, 10 | elrab2 3333 | 1 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ∩ cin 3539 𝒫 cpw 4108 ∪ cuni 4372 class class class wbr 4583 Topctop 20517 Refcref 21115 CovHasRefccref 29237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-in 3547 df-ss 3554 df-pw 4110 df-uni 4373 df-cref 29238 |
This theorem is referenced by: creftop 29241 crefi 29242 crefss 29244 cmpcref 29245 cmppcmp 29253 dispcmp 29254 pcmplfin 29255 |
Copyright terms: Public domain | W3C validator |