Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscplgredg | Structured version Visualization version GIF version |
Description: A graph is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.) |
Ref | Expression |
---|---|
iscplgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
iscplgredg.v | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
iscplgredg | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscplgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | iscplgrnb 40638 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
3 | df-3an 1033 | . . . . . 6 ⊢ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
5 | iscplgredg.v | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 5 | nbgrel 40564 | . . . . . 6 ⊢ (𝐺 ∈ 𝑊 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
7 | 6 | ad2antrr 758 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣 ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
8 | eldifsn 4260 | . . . . . . 7 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) | |
9 | simpr 476 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
10 | simpl 472 | . . . . . . . . 9 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣) → 𝑛 ∈ 𝑉) | |
11 | 9, 10 | anim12ci 589 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → (𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) |
12 | simprr 792 | . . . . . . . 8 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → 𝑛 ≠ 𝑣) | |
13 | 11, 12 | jca 553 | . . . . . . 7 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ (𝑛 ∈ 𝑉 ∧ 𝑛 ≠ 𝑣)) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
14 | 8, 13 | sylan2b 491 | . . . . . 6 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣)) |
15 | 14 | biantrurd 528 | . . . . 5 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ≠ 𝑣) ∧ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒))) |
16 | 4, 7, 15 | 3bitr4d 299 | . . . 4 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
17 | 16 | ralbidva 2968 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
18 | 17 | ralbidva 2968 | . 2 ⊢ (𝐺 ∈ 𝑊 → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
19 | 2, 18 | bitrd 267 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒 ∈ 𝐸 {𝑣, 𝑛} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 ∖ cdif 3537 ⊆ wss 3540 {csn 4125 {cpr 4127 ‘cfv 5804 (class class class)co 6549 Vtxcvtx 25673 Edgcedga 25792 NeighbVtx cnbgr 40550 ComplGraphccplgr 40552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-nbgr 40554 df-uvtxa 40556 df-cplgr 40557 |
This theorem is referenced by: cplgrop 40659 cusconngr 41358 |
Copyright terms: Public domain | W3C validator |