Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscplgredg Structured version   Visualization version   GIF version

Theorem iscplgredg 40639
 Description: A graph is complete iff all vertices are connected with each other by (at least) one edge. (Contributed by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
iscplgr.v 𝑉 = (Vtx‘𝐺)
iscplgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iscplgredg (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑛,𝐺,𝑣   𝑛,𝑉   𝑣,𝑊   𝑒,𝐸   𝑒,𝐺   𝑒,𝑉   𝑒,𝑊,𝑛,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑛)

Proof of Theorem iscplgredg
StepHypRef Expression
1 iscplgr.v . . 3 𝑉 = (Vtx‘𝐺)
21iscplgrnb 40638 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
3 df-3an 1033 . . . . . 6 (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
43a1i 11 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
5 iscplgredg.v . . . . . . 7 𝐸 = (Edg‘𝐺)
61, 5nbgrel 40564 . . . . . 6 (𝐺𝑊 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
76ad2antrr 758 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
8 eldifsn 4260 . . . . . . 7 (𝑛 ∈ (𝑉 ∖ {𝑣}) ↔ (𝑛𝑉𝑛𝑣))
9 simpr 476 . . . . . . . . 9 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
10 simpl 472 . . . . . . . . 9 ((𝑛𝑉𝑛𝑣) → 𝑛𝑉)
119, 10anim12ci 589 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → (𝑛𝑉𝑣𝑉))
12 simprr 792 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → 𝑛𝑣)
1311, 12jca 553 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ (𝑛𝑉𝑛𝑣)) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
148, 13sylan2b 491 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣))
1514biantrurd 528 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒 ↔ (((𝑛𝑉𝑣𝑉) ∧ 𝑛𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒)))
164, 7, 153bitr4d 299 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1716ralbidva 2968 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
1817ralbidva 2968 . 2 (𝐺𝑊 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
192, 18bitrd 267 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑣, 𝑛} ⊆ 𝑒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  {cpr 4127  ‘cfv 5804  (class class class)co 6549  Vtxcvtx 25673  Edgcedga 25792   NeighbVtx cnbgr 40550  ComplGraphccplgr 40552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-nbgr 40554  df-uvtxa 40556  df-cplgr 40557 This theorem is referenced by:  cplgrop  40659  cusconngr  41358
 Copyright terms: Public domain W3C validator