Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm Structured version   Visualization version   GIF version

Theorem iscnrm 20937
 Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
iscnrm (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem iscnrm
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4380 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . . 5 𝑋 = 𝐽
31, 2syl6eqr 2662 . . . 4 (𝑗 = 𝐽 𝑗 = 𝑋)
43pweqd 4113 . . 3 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
5 oveq1 6556 . . . 4 (𝑗 = 𝐽 → (𝑗t 𝑥) = (𝐽t 𝑥))
65eleq1d 2672 . . 3 (𝑗 = 𝐽 → ((𝑗t 𝑥) ∈ Nrm ↔ (𝐽t 𝑥) ∈ Nrm))
74, 6raleqbidv 3129 . 2 (𝑗 = 𝐽 → (∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm ↔ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
8 df-cnrm 20932 . 2 CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm}
97, 8elrab2 3333 1 (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(𝐽t 𝑥) ∈ Nrm))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  𝒫 cpw 4108  ∪ cuni 4372  (class class class)co 6549   ↾t crest 15904  Topctop 20517  Nrmcnrm 20924  CNrmccnrm 20925 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-cnrm 20932 This theorem is referenced by:  cnrmtop  20951  iscnrm2  20952  cnrmi  20974
 Copyright terms: Public domain W3C validator