MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscncl Structured version   Visualization version   GIF version

Theorem iscncl 20883
Description: A definition of a continuous function using closed sets. Theorem 1 (d) of [BourbakiTop1] p. I.9. (Contributed by FL, 19-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscncl ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌

Proof of Theorem iscncl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnf2 20863 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expa 1257 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
3 cnclima 20882 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) ∈ (Clsd‘𝐽))
43ralrimiva 2949 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
54adantl 481 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
62, 5jca 553 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽)))
7 simprl 790 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → 𝐹:𝑋𝑌)
8 toponuni 20542 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
98ad3antrrr 762 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝑋 = 𝐽)
10 simplrl 796 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐹:𝑋𝑌)
11 fimacnv 6255 . . . . . . . . . . 11 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
1211eqcomd 2616 . . . . . . . . . 10 (𝐹:𝑋𝑌𝑋 = (𝐹𝑌))
1310, 12syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝑋 = (𝐹𝑌))
149, 13eqtr3d 2646 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐽 = (𝐹𝑌))
1514difeq1d 3689 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐽 ∖ (𝐹𝑥)) = ((𝐹𝑌) ∖ (𝐹𝑥)))
16 ffun 5961 . . . . . . . 8 (𝐹:𝑋𝑌 → Fun 𝐹)
17 funcnvcnv 5870 . . . . . . . 8 (Fun 𝐹 → Fun 𝐹)
18 imadif 5887 . . . . . . . 8 (Fun 𝐹 → (𝐹 “ (𝑌𝑥)) = ((𝐹𝑌) ∖ (𝐹𝑥)))
1910, 16, 17, 184syl 19 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹 “ (𝑌𝑥)) = ((𝐹𝑌) ∖ (𝐹𝑥)))
2015, 19eqtr4d 2647 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐽 ∖ (𝐹𝑥)) = (𝐹 “ (𝑌𝑥)))
21 toponuni 20542 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2221ad3antlr 763 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝑌 = 𝐾)
2322difeq1d 3689 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝑌𝑥) = ( 𝐾𝑥))
24 topontop 20541 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2524ad3antlr 763 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐾 ∈ Top)
26 eqid 2610 . . . . . . . . . 10 𝐾 = 𝐾
2726opncld 20647 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑥𝐾) → ( 𝐾𝑥) ∈ (Clsd‘𝐾))
2825, 27sylancom 698 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐾𝑥) ∈ (Clsd‘𝐾))
2923, 28eqeltrd 2688 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝑌𝑥) ∈ (Clsd‘𝐾))
30 simplrr 797 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
31 imaeq2 5381 . . . . . . . . 9 (𝑦 = (𝑌𝑥) → (𝐹𝑦) = (𝐹 “ (𝑌𝑥)))
3231eleq1d 2672 . . . . . . . 8 (𝑦 = (𝑌𝑥) → ((𝐹𝑦) ∈ (Clsd‘𝐽) ↔ (𝐹 “ (𝑌𝑥)) ∈ (Clsd‘𝐽)))
3332rspcv 3278 . . . . . . 7 ((𝑌𝑥) ∈ (Clsd‘𝐾) → (∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽) → (𝐹 “ (𝑌𝑥)) ∈ (Clsd‘𝐽)))
3429, 30, 33sylc 63 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹 “ (𝑌𝑥)) ∈ (Clsd‘𝐽))
3520, 34eqeltrd 2688 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐽 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽))
36 topontop 20541 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3736ad3antrrr 762 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐽 ∈ Top)
38 cnvimass 5404 . . . . . . . 8 (𝐹𝑥) ⊆ dom 𝐹
39 fdm 5964 . . . . . . . . 9 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
4010, 39syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → dom 𝐹 = 𝑋)
4138, 40syl5sseq 3616 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝑋)
4241, 9sseqtrd 3604 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝐽)
43 eqid 2610 . . . . . . 7 𝐽 = 𝐽
4443isopn2 20646 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ 𝐽 ↔ ( 𝐽 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽)))
4537, 42, 44syl2anc 691 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ((𝐹𝑥) ∈ 𝐽 ↔ ( 𝐽 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽)))
4635, 45mpbird 246 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
4746ralrimiva 2949 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)
48 iscn 20849 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
4948adantr 480 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
507, 47, 49mpbir2and 959 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → 𝐹 ∈ (𝐽 Cn 𝐾))
516, 50impbida 873 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cdif 3537  wss 3540   cuni 4372  ccnv 5037  dom cdm 5038  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518  Clsdccld 20630   Cn ccn 20838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cld 20633  df-cn 20841
This theorem is referenced by:  cncls2  20887  paste  20908  cmphaushmeo  21413  ubthlem1  27110  ubthlem2  27111
  Copyright terms: Public domain W3C validator