Step | Hyp | Ref
| Expression |
1 | | iscmet3.3 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | iscmet3.1 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 2 | iscmet3lem3 22896 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+)
→ ∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑟) |
4 | 1, 3 | sylan 487 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑟) |
5 | 2 | r19.2uz 13939 |
. . . . 5
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((1 / 2)↑𝑘) < 𝑟 → ∃𝑘 ∈ 𝑍 ((1 / 2)↑𝑘) < 𝑟) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑘 ∈ 𝑍 ((1 / 2)↑𝑘) < 𝑟) |
7 | | simpl 472 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑘 ∈ 𝑍) |
8 | 7 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ 𝑍) |
9 | 8, 2 | syl6eleq 2698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
10 | | eluzfz2 12220 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ (𝑀...𝑘)) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ (𝑀...𝑘)) |
12 | | iscmet3.10 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) |
13 | 12 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) |
14 | | rsp 2913 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛) → (𝑘 ∈ 𝑍 → ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛))) |
15 | 13, 8, 14 | sylc 63 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛)) |
16 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) |
17 | 16 | eleq2d 2673 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑘) ∈ (𝑆‘𝑛) ↔ (𝐹‘𝑘) ∈ (𝑆‘𝑘))) |
18 | 17 | rspcv 3278 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀...𝑘) → (∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛) → (𝐹‘𝑘) ∈ (𝑆‘𝑘))) |
19 | 11, 15, 18 | sylc 63 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑘) ∈ (𝑆‘𝑘)) |
20 | | simprr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑗 ∈ (ℤ≥‘𝑘)) |
21 | | elfzuzb 12207 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...𝑗) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑗 ∈ (ℤ≥‘𝑘))) |
22 | 9, 20, 21 | sylanbrc 695 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ (𝑀...𝑗)) |
23 | 2 | uztrn2 11581 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
24 | 23 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑗 ∈ 𝑍) |
25 | | oveq2 6557 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑀...𝑘) = (𝑀...𝑗)) |
26 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
27 | 26 | eleq1d 2672 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ (𝑆‘𝑛) ↔ (𝐹‘𝑗) ∈ (𝑆‘𝑛))) |
28 | 25, 27 | raleqbidv 3129 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑗)(𝐹‘𝑗) ∈ (𝑆‘𝑛))) |
29 | 28 | rspcv 3278 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝐹‘𝑘) ∈ (𝑆‘𝑛) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹‘𝑗) ∈ (𝑆‘𝑛))) |
30 | 24, 13, 29 | sylc 63 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑛 ∈ (𝑀...𝑗)(𝐹‘𝑗) ∈ (𝑆‘𝑛)) |
31 | 16 | eleq2d 2673 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑗) ∈ (𝑆‘𝑛) ↔ (𝐹‘𝑗) ∈ (𝑆‘𝑘))) |
32 | 31 | rspcv 3278 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀...𝑗) → (∀𝑛 ∈ (𝑀...𝑗)(𝐹‘𝑗) ∈ (𝑆‘𝑛) → (𝐹‘𝑗) ∈ (𝑆‘𝑘))) |
33 | 22, 30, 32 | sylc 63 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑗) ∈ (𝑆‘𝑘)) |
34 | | iscmet3.9 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
35 | 34 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
36 | | eluzelz 11573 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
37 | 36, 2 | eleq2s 2706 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
38 | 37 | ad2antrl 760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑘 ∈ ℤ) |
39 | | rsp 2913 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℤ ∀𝑢 ∈
(𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → (𝑘 ∈ ℤ → ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) |
40 | 35, 38, 39 | sylc 63 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
41 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐹‘𝑘) → (𝑢𝐷𝑣) = ((𝐹‘𝑘)𝐷𝑣)) |
42 | 41 | breq1d 4593 |
. . . . . . . . . 10
⊢ (𝑢 = (𝐹‘𝑘) → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹‘𝑘)𝐷𝑣) < ((1 / 2)↑𝑘))) |
43 | | oveq2 6557 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝐹‘𝑗) → ((𝐹‘𝑘)𝐷𝑣) = ((𝐹‘𝑘)𝐷(𝐹‘𝑗))) |
44 | 43 | breq1d 4593 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑗) → (((𝐹‘𝑘)𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘))) |
45 | 42, 44 | rspc2va 3294 |
. . . . . . . . 9
⊢ ((((𝐹‘𝑘) ∈ (𝑆‘𝑘) ∧ (𝐹‘𝑗) ∈ (𝑆‘𝑘)) ∧ ∀𝑢 ∈ (𝑆‘𝑘)∀𝑣 ∈ (𝑆‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘)) |
46 | 19, 33, 40, 45 | syl21anc 1317 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘)) |
47 | | iscmet3.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
48 | 47 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝐷 ∈ (Met‘𝑋)) |
49 | | iscmet3.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
50 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝐹:𝑍⟶𝑋) |
51 | | ffvelrn 6265 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶𝑋 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑋) |
52 | 50, 7, 51 | syl2an 493 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑘) ∈ 𝑋) |
53 | | ffvelrn 6265 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑍⟶𝑋 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ 𝑋) |
54 | 50, 23, 53 | syl2an 493 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (𝐹‘𝑗) ∈ 𝑋) |
55 | | metcl 21947 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ ℝ) |
56 | 48, 52, 54, 55 | syl3anc 1318 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ ℝ) |
57 | | 1rp 11712 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ+ |
58 | | rphalfcl 11734 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (1 / 2)
∈ ℝ+ |
60 | | rpexpcl 12741 |
. . . . . . . . . . 11
⊢ (((1 / 2)
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈
ℝ+) |
61 | 59, 38, 60 | sylancr 694 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((1 / 2)↑𝑘) ∈
ℝ+) |
62 | 61 | rpred 11748 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((1 / 2)↑𝑘) ∈
ℝ) |
63 | | rpre 11715 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
64 | 63 | ad2antlr 759 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → 𝑟 ∈ ℝ) |
65 | | lttr 9993 |
. . . . . . . . 9
⊢ ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ ∧ 𝑟 ∈ ℝ) →
((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
66 | 56, 62, 64, 65 | syl3anc 1318 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → ((((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < ((1 / 2)↑𝑘) ∧ ((1 / 2)↑𝑘) < 𝑟) → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
67 | 46, 66 | mpand 707 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘))) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
68 | 67 | anassrs 678 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((1 / 2)↑𝑘) < 𝑟 → ((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
69 | 68 | ralrimdva 2952 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (((1 / 2)↑𝑘) < 𝑟 → ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
70 | 69 | reximdva 3000 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∃𝑘 ∈ 𝑍 ((1 / 2)↑𝑘) < 𝑟 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
71 | 6, 70 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟) |
72 | 71 | ralrimiva 2949 |
. 2
⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟) |
73 | | metxmet 21949 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
74 | 47, 73 | syl 17 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
75 | | eqidd 2611 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
76 | | eqidd 2611 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
77 | 2, 74, 1, 75, 76, 49 | iscauf 22886 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑗)) < 𝑟)) |
78 | 72, 77 | mpbird 246 |
1
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |