MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclm Structured version   Visualization version   GIF version

Theorem isclm 22672
Description: A complex module is a left module over a subring of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isclm (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem isclm
Dummy variables 𝑓 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6113 . . . . 5 (Scalar‘𝑤) ∈ V
21a1i 11 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
3 fvex 6113 . . . . . 6 (Base‘𝑓) ∈ V
43a1i 11 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) ∈ V)
5 id 22 . . . . . . . . 9 (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤))
6 fveq2 6103 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
7 isclm.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
86, 7syl6eqr 2662 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
95, 8sylan9eqr 2666 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹)
109adantr 480 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑓 = 𝐹)
11 id 22 . . . . . . . . 9 (𝑘 = (Base‘𝑓) → 𝑘 = (Base‘𝑓))
129fveq2d 6107 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹))
13 isclm.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
1412, 13syl6eqr 2662 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾)
1511, 14sylan9eqr 2666 . . . . . . . 8 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → 𝑘 = 𝐾)
1615oveq2d 6565 . . . . . . 7 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (ℂflds 𝑘) = (ℂflds 𝐾))
1710, 16eqeq12d 2625 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑓 = (ℂflds 𝑘) ↔ 𝐹 = (ℂflds 𝐾)))
1815eleq1d 2672 . . . . . 6 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → (𝑘 ∈ (SubRing‘ℂfld) ↔ 𝐾 ∈ (SubRing‘ℂfld)))
1917, 18anbi12d 743 . . . . 5 (((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) ∧ 𝑘 = (Base‘𝑓)) → ((𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
204, 19sbcied 3439 . . . 4 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ([(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
212, 20sbcied 3439 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld)) ↔ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
22 df-clm 22671 . . 3 ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
2321, 22elrab2 3333 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
24 3anass 1035 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) ↔ (𝑊 ∈ LMod ∧ (𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))))
2523, 24bitr4i 266 1 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  [wsbc 3402  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  Scalarcsca 15771  SubRingcsubrg 18599  LModclmod 18686  fldccnfld 19567  ℂModcclm 22670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-clm 22671
This theorem is referenced by:  clmsca  22673  clmsubrg  22674  clmlmod  22675  isclmi  22685  lmhmclm  22695  isclmp  22705  cphclm  22797  tchclm  22839
  Copyright terms: Public domain W3C validator