Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbn Structured version   Visualization version   GIF version

Theorem isbn 22943
 Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
isbn (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))

Proof of Theorem isbn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 3758 . . 3 (𝑊 ∈ (NrmVec ∩ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp))
21anbi1i 727 . 2 ((𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
3 fveq2 6103 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
4 isbn.1 . . . . 5 𝐹 = (Scalar‘𝑊)
53, 4syl6eqr 2662 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
65eleq1d 2672 . . 3 (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ CMetSp ↔ 𝐹 ∈ CMetSp))
7 df-bn 22941 . . 3 Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp}
86, 7elrab2 3333 . 2 (𝑊 ∈ Ban ↔ (𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp))
9 df-3an 1033 . 2 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
102, 8, 93bitr4i 291 1 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∩ cin 3539  ‘cfv 5804  Scalarcsca 15771  NrmVeccnvc 22196  CMetSpccms 22937  Bancbn 22938 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-bn 22941 This theorem is referenced by:  bnsca  22944  bnnvc  22945  bncms  22949  lssbn  22956  srabn  22964  ishl2  22974
 Copyright terms: Public domain W3C validator