MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredmul Structured version   Visualization version   GIF version

Theorem irredmul 18532
Description: If product of two elements is irreducible, then one of the elements must be a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredmul.b 𝐵 = (Base‘𝑅)
irredmul.u 𝑈 = (Unit‘𝑅)
irredmul.t · = (.r𝑅)
Assertion
Ref Expression
irredmul ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))

Proof of Theorem irredmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 irredmul.b . . . . 5 𝐵 = (Base‘𝑅)
2 irredmul.u . . . . 5 𝑈 = (Unit‘𝑅)
3 irredn0.i . . . . 5 𝐼 = (Irred‘𝑅)
4 irredmul.t . . . . 5 · = (.r𝑅)
51, 2, 3, 4isirred2 18524 . . . 4 ((𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝐵 ∧ ¬ (𝑋 · 𝑌) ∈ 𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈))))
65simp3bi 1071 . . 3 ((𝑋 · 𝑌) ∈ 𝐼 → ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)))
7 eqid 2610 . . . 4 (𝑋 · 𝑌) = (𝑋 · 𝑌)
8 oveq1 6556 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
98eqeq1d 2612 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑦) = (𝑋 · 𝑌)))
10 eleq1 2676 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
1110orbi1d 735 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑈𝑦𝑈) ↔ (𝑋𝑈𝑦𝑈)))
129, 11imbi12d 333 . . . . 5 (𝑥 = 𝑋 → (((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈))))
13 oveq2 6557 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1413eqeq1d 2612 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 · 𝑦) = (𝑋 · 𝑌) ↔ (𝑋 · 𝑌) = (𝑋 · 𝑌)))
15 eleq1 2676 . . . . . . 7 (𝑦 = 𝑌 → (𝑦𝑈𝑌𝑈))
1615orbi2d 734 . . . . . 6 (𝑦 = 𝑌 → ((𝑋𝑈𝑦𝑈) ↔ (𝑋𝑈𝑌𝑈)))
1714, 16imbi12d 333 . . . . 5 (𝑦 = 𝑌 → (((𝑋 · 𝑦) = (𝑋 · 𝑌) → (𝑋𝑈𝑦𝑈)) ↔ ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
1812, 17rspc2v 3293 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → ((𝑋 · 𝑌) = (𝑋 · 𝑌) → (𝑋𝑈𝑌𝑈))))
197, 18mpii 45 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = (𝑋 · 𝑌) → (𝑥𝑈𝑦𝑈)) → (𝑋𝑈𝑌𝑈)))
206, 19syl5 33 . 2 ((𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝐼 → (𝑋𝑈𝑌𝑈)))
21203impia 1253 1 ((𝑋𝐵𝑌𝐵 ∧ (𝑋 · 𝑌) ∈ 𝐼) → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cfv 5804  (class class class)co 6549  Basecbs 15695  .rcmulr 15769  Unitcui 18462  Irredcir 18463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-irred 18466
This theorem is referenced by:  prmirredlem  19660
  Copyright terms: Public domain W3C validator