Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem6 Structured version   Visualization version   GIF version

Theorem irrapxlem6 36409
 Description: Lemma for irrapx1 36410. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 788 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ)
2 simpr1 1060 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎)
3 simpr3 1062 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))
42, 3jca 553 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
5 breq2 4587 . . . . . 6 (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎))
6 oveq1 6556 . . . . . . . 8 (𝑦 = 𝑎 → (𝑦𝐴) = (𝑎𝐴))
76fveq2d 6107 . . . . . . 7 (𝑦 = 𝑎 → (abs‘(𝑦𝐴)) = (abs‘(𝑎𝐴)))
8 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎))
98oveq1d 6564 . . . . . . 7 (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2))
107, 9breq12d 4596 . . . . . 6 (𝑦 = 𝑎 → ((abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
115, 10anbi12d 743 . . . . 5 (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
1211elrab 3331 . . . 4 (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
131, 4, 12sylanbrc 695 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
14 simpr2 1061 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < 𝐵)
15 oveq1 6556 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴) = (𝑎𝐴))
1615fveq2d 6107 . . . . 5 (𝑥 = 𝑎 → (abs‘(𝑥𝐴)) = (abs‘(𝑎𝐴)))
1716breq1d 4593 . . . 4 (𝑥 = 𝑎 → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘(𝑎𝐴)) < 𝐵))
1817rspcev 3282 . . 3 ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
1913, 14, 18syl2anc 691 . 2 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
20 irrapxlem5 36408 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
2119, 20r19.29a 3060 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977  ∃wrex 2897  {crab 2900   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  0cc0 9815   < clt 9953   − cmin 10145  -cneg 10146  2c2 10947  ℚcq 11664  ℝ+crp 11708  ↑cexp 12722  abscabs 13822  denomcdenom 15280 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-fz 12198  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-numer 15281  df-denom 15282 This theorem is referenced by:  irrapx1  36410
 Copyright terms: Public domain W3C validator