Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem1 Structured version   Visualization version   GIF version

Theorem irrapxlem1 36404
 Description: Lemma for irrapx1 36410. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 36399 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fzssuz 12253 . . . 4 (0...𝐵) ⊆ (ℤ‘0)
2 uzssz 11583 . . . . 5 (ℤ‘0) ⊆ ℤ
3 zssre 11261 . . . . 5 ℤ ⊆ ℝ
42, 3sstri 3577 . . . 4 (ℤ‘0) ⊆ ℝ
51, 4sstri 3577 . . 3 (0...𝐵) ⊆ ℝ
65a1i 11 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...𝐵) ⊆ ℝ)
7 ovex 6577 . . 3 (0...(𝐵 − 1)) ∈ V
87a1i 11 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ∈ V)
9 nnm1nn0 11211 . . . . 5 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℕ0)
109adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ ℕ0)
11 nn0uz 11598 . . . 4 0 = (ℤ‘0)
1210, 11syl6eleq 2698 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘0))
13 nnz 11276 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
1413adantl 481 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
15 nnre 10904 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1615adantl 481 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
1716ltm1d 10835 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (𝐵 − 1) < 𝐵)
18 fzsdom2 13075 . . 3 ((((𝐵 − 1) ∈ (ℤ‘0) ∧ 𝐵 ∈ ℤ) ∧ (𝐵 − 1) < 𝐵) → (0...(𝐵 − 1)) ≺ (0...𝐵))
1912, 14, 17, 18syl21anc 1317 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (0...(𝐵 − 1)) ≺ (0...𝐵))
2015ad2antlr 759 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
21 rpre 11715 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2221ad2antrr 758 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
23 elfzelz 12213 . . . . . . . . . 10 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℤ)
2423zred 11358 . . . . . . . . 9 (𝑎 ∈ (0...𝐵) → 𝑎 ∈ ℝ)
2524adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝑎 ∈ ℝ)
2622, 25remulcld 9949 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐴 · 𝑎) ∈ ℝ)
27 1rp 11712 . . . . . . 7 1 ∈ ℝ+
28 modcl 12534 . . . . . . 7 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
2926, 27, 28sylancl 693 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) ∈ ℝ)
3020, 29remulcld 9949 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ)
3130flcld 12461 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ)
3220recnd 9947 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
3332mul01d 10114 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) = 0)
34 modge0 12540 . . . . . . . . . 10 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ ((𝐴 · 𝑎) mod 1))
3526, 27, 34sylancl 693 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ ((𝐴 · 𝑎) mod 1))
36 0red 9920 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ∈ ℝ)
37 nngt0 10926 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
3837ad2antlr 759 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 < 𝐵)
39 lemul2 10755 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
4036, 29, 20, 38, 39syl112anc 1322 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ ((𝐴 · 𝑎) mod 1) ↔ (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1))))
4135, 40mpbid 221 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 0) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4233, 41eqbrtrrd 4607 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
4336, 30lenltd 10062 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)) ↔ ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0))
4442, 43mpbid 221 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (𝐵 · ((𝐴 · 𝑎) mod 1)) < 0)
45 0z 11265 . . . . . . 7 0 ∈ ℤ
46 fllt 12469 . . . . . . 7 (((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ ∧ 0 ∈ ℤ) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4730, 45, 46sylancl 693 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑎) mod 1)) < 0 ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
4844, 47mtbid 313 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0)
4931zred 11358 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℝ)
5036, 49lenltd 10062 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ↔ ¬ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 0))
5148, 50mpbird 246 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))))
52 elnn0z 11267 . . . 4 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ 0 ≤ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1)))))
5331, 51, 52sylanbrc 695 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0)
549ad2antlr 759 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℕ0)
55 flle 12462 . . . . . . 7 ((𝐵 · ((𝐴 · 𝑎) mod 1)) ∈ ℝ → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
5630, 55syl 17 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 · ((𝐴 · 𝑎) mod 1)))
57 modlt 12541 . . . . . . . . 9 (((𝐴 · 𝑎) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐴 · 𝑎) mod 1) < 1)
5826, 27, 57sylancl 693 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐴 · 𝑎) mod 1) < 1)
59 1red 9934 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 1 ∈ ℝ)
60 ltmul2 10753 . . . . . . . . 9 ((((𝐴 · 𝑎) mod 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6129, 59, 20, 38, 60syl112anc 1322 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (((𝐴 · 𝑎) mod 1) < 1 ↔ (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1)))
6258, 61mpbid 221 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < (𝐵 · 1))
6332mulid1d 9936 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · 1) = 𝐵)
6462, 63breqtrd 4609 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑎) mod 1)) < 𝐵)
6549, 30, 20, 56, 64lelttrd 10074 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < 𝐵)
66 nncn 10905 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
67 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
68 npcan 10169 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
6966, 67, 68sylancl 693 . . . . . 6 (𝐵 ∈ ℕ → ((𝐵 − 1) + 1) = 𝐵)
7069ad2antlr 759 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((𝐵 − 1) + 1) = 𝐵)
7165, 70breqtrrd 4611 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1))
7213ad2antlr 759 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → 𝐵 ∈ ℤ)
73 1z 11284 . . . . . 6 1 ∈ ℤ
74 zsubcl 11296 . . . . . 6 ((𝐵 ∈ ℤ ∧ 1 ∈ ℤ) → (𝐵 − 1) ∈ ℤ)
7572, 73, 74sylancl 693 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (𝐵 − 1) ∈ ℤ)
76 zleltp1 11305 . . . . 5 (((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7731, 75, 76syl2anc 691 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1) ↔ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) < ((𝐵 − 1) + 1)))
7871, 77mpbird 246 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1))
79 elfz2nn0 12300 . . 3 ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)) ↔ ((⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ ℕ0 ∧ (𝐵 − 1) ∈ ℕ0 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ≤ (𝐵 − 1)))
8053, 54, 78, 79syl3anbrc 1239 . 2 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑎 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) ∈ (0...(𝐵 − 1)))
81 oveq2 6557 . . . . 5 (𝑎 = 𝑥 → (𝐴 · 𝑎) = (𝐴 · 𝑥))
8281oveq1d 6564 . . . 4 (𝑎 = 𝑥 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑥) mod 1))
8382oveq2d 6565 . . 3 (𝑎 = 𝑥 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑥) mod 1)))
8483fveq2d 6107 . 2 (𝑎 = 𝑥 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))))
85 oveq2 6557 . . . . 5 (𝑎 = 𝑦 → (𝐴 · 𝑎) = (𝐴 · 𝑦))
8685oveq1d 6564 . . . 4 (𝑎 = 𝑦 → ((𝐴 · 𝑎) mod 1) = ((𝐴 · 𝑦) mod 1))
8786oveq2d 6565 . . 3 (𝑎 = 𝑦 → (𝐵 · ((𝐴 · 𝑎) mod 1)) = (𝐵 · ((𝐴 · 𝑦) mod 1)))
8887fveq2d 6107 . 2 (𝑎 = 𝑦 → (⌊‘(𝐵 · ((𝐴 · 𝑎) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
896, 8, 19, 80, 84, 88fphpdo 36399 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549   ≺ csdm 7840  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453   mod cmo 12530 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-hash 12980 This theorem is referenced by:  irrapxlem2  36405
 Copyright terms: Public domain W3C validator