Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iprodefisumlem Structured version   Visualization version   GIF version

Theorem iprodefisumlem 30879
Description: Lemma for iprodefisum 30880. (Contributed by Scott Fenton, 11-Feb-2018.)
Hypotheses
Ref Expression
iprodefisumlem.1 𝑍 = (ℤ𝑀)
iprodefisumlem.2 (𝜑𝑀 ∈ ℤ)
iprodefisumlem.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
iprodefisumlem (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))

Proof of Theorem iprodefisumlem
Dummy variables 𝑗 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodefisumlem.1 . . . 4 𝑍 = (ℤ𝑀)
2 iprodefisumlem.2 . . . 4 (𝜑𝑀 ∈ ℤ)
3 iprodefisumlem.3 . . . . . 6 (𝜑𝐹:𝑍⟶ℂ)
4 fvco3 6185 . . . . . 6 ((𝐹:𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹𝑘)))
53, 4sylan 487 . . . . 5 ((𝜑𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) = (exp‘(𝐹𝑘)))
63ffvelrnda 6267 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7 efcl 14652 . . . . . 6 ((𝐹𝑘) ∈ ℂ → (exp‘(𝐹𝑘)) ∈ ℂ)
86, 7syl 17 . . . . 5 ((𝜑𝑘𝑍) → (exp‘(𝐹𝑘)) ∈ ℂ)
95, 8eqeltrd 2688 . . . 4 ((𝜑𝑘𝑍) → ((exp ∘ 𝐹)‘𝑘) ∈ ℂ)
101, 2, 9prodf 14458 . . 3 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)):𝑍⟶ℂ)
11 ffn 5958 . . 3 (seq𝑀( · , (exp ∘ 𝐹)):𝑍⟶ℂ → seq𝑀( · , (exp ∘ 𝐹)) Fn 𝑍)
1210, 11syl 17 . 2 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) Fn 𝑍)
13 eff 14651 . . . 4 exp:ℂ⟶ℂ
14 ffn 5958 . . . 4 (exp:ℂ⟶ℂ → exp Fn ℂ)
1513, 14ax-mp 5 . . 3 exp Fn ℂ
161, 2, 6serf 12691 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
17 fnfco 5982 . . 3 ((exp Fn ℂ ∧ seq𝑀( + , 𝐹):𝑍⟶ℂ) → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
1815, 16, 17sylancr 694 . 2 (𝜑 → (exp ∘ seq𝑀( + , 𝐹)) Fn 𝑍)
19 fveq2 6103 . . . . . . . 8 (𝑗 = 𝑀 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑀))
20 fveq2 6103 . . . . . . . . 9 (𝑗 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑀))
2120fveq2d 6107 . . . . . . . 8 (𝑗 = 𝑀 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))
2219, 21eqeq12d 2625 . . . . . . 7 (𝑗 = 𝑀 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))
2322imbi2d 329 . . . . . 6 (𝑗 = 𝑀 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))))
24 fveq2 6103 . . . . . . . 8 (𝑗 = 𝑛 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑛))
25 fveq2 6103 . . . . . . . . 9 (𝑗 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑛))
2625fveq2d 6107 . . . . . . . 8 (𝑗 = 𝑛 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))
2724, 26eqeq12d 2625 . . . . . . 7 (𝑗 = 𝑛 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))))
2827imbi2d 329 . . . . . 6 (𝑗 = 𝑛 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)))))
29 fveq2 6103 . . . . . . . 8 (𝑗 = (𝑛 + 1) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)))
30 fveq2 6103 . . . . . . . . 9 (𝑗 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
3130fveq2d 6107 . . . . . . . 8 (𝑗 = (𝑛 + 1) → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
3229, 31eqeq12d 2625 . . . . . . 7 (𝑗 = (𝑛 + 1) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
3332imbi2d 329 . . . . . 6 (𝑗 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
34 fveq2 6103 . . . . . . . 8 (𝑗 = 𝑘 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (seq𝑀( · , (exp ∘ 𝐹))‘𝑘))
35 fveq2 6103 . . . . . . . . 9 (𝑗 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑘))
3635fveq2d 6107 . . . . . . . 8 (𝑗 = 𝑘 → (exp‘(seq𝑀( + , 𝐹)‘𝑗)) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
3734, 36eqeq12d 2625 . . . . . . 7 (𝑗 = 𝑘 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗)) ↔ (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
3837imbi2d 329 . . . . . 6 (𝑗 = 𝑘 → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑗) = (exp‘(seq𝑀( + , 𝐹)‘𝑗))) ↔ (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))))
39 uzid 11578 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
402, 39syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℤ𝑀))
4140, 1syl6eleqr 2699 . . . . . . . . 9 (𝜑𝑀𝑍)
42 fvco3 6185 . . . . . . . . 9 ((𝐹:𝑍⟶ℂ ∧ 𝑀𝑍) → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹𝑀)))
433, 41, 42syl2anc 691 . . . . . . . 8 (𝜑 → ((exp ∘ 𝐹)‘𝑀) = (exp‘(𝐹𝑀)))
44 seq1 12676 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀))
452, 44syl 17 . . . . . . . 8 (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = ((exp ∘ 𝐹)‘𝑀))
46 seq1 12676 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
472, 46syl 17 . . . . . . . . 9 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
4847fveq2d 6107 . . . . . . . 8 (𝜑 → (exp‘(seq𝑀( + , 𝐹)‘𝑀)) = (exp‘(𝐹𝑀)))
4943, 45, 483eqtr4d 2654 . . . . . . 7 (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀)))
5049a1i 11 . . . . . 6 (𝑀 ∈ ℤ → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑀) = (exp‘(seq𝑀( + , 𝐹)‘𝑀))))
51 oveq1 6556 . . . . . . . . . . 11 ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
52513ad2ant3 1077 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
533adantl 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → 𝐹:𝑍⟶ℂ)
54 peano2uz 11617 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
5554, 1syl6eleqr 2699 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
5655adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (𝑛 + 1) ∈ 𝑍)
57 fvco3 6185 . . . . . . . . . . . . . 14 ((𝐹:𝑍⟶ℂ ∧ (𝑛 + 1) ∈ 𝑍) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1))))
5853, 56, 57syl2anc 691 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp ∘ 𝐹)‘(𝑛 + 1)) = (exp‘(𝐹‘(𝑛 + 1))))
5958oveq2d 6565 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
6016ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
6160expcom 450 . . . . . . . . . . . . . . 15 (𝑛𝑍 → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ))
621eqcomi 2619 . . . . . . . . . . . . . . 15 (ℤ𝑀) = 𝑍
6361, 62eleq2s 2706 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ))
6463imp 444 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
6553, 56ffvelrnd 6268 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
66 efadd 14663 . . . . . . . . . . . . 13 (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (𝐹‘(𝑛 + 1)) ∈ ℂ) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
6764, 65, 66syl2anc 691 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · (exp‘(𝐹‘(𝑛 + 1)))))
6859, 67eqtr4d 2647 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
69683adant3 1074 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((exp‘(seq𝑀( + , 𝐹)‘𝑛)) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
7052, 69eqtrd 2644 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
71 seqp1 12678 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
7271adantr 480 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
73723adant3 1074 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) · ((exp ∘ 𝐹)‘(𝑛 + 1))))
74 seqp1 12678 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7574adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
7675fveq2d 6107 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
77763adant3 1074 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (exp‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
7870, 73, 773eqtr4d 2654 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ 𝜑 ∧ (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))
79783exp 1256 . . . . . . 7 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛)) → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
8079a2d 29 . . . . . 6 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑛) = (exp‘(seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘(𝑛 + 1)) = (exp‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
8123, 28, 33, 38, 50, 80uzind4 11622 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
8281, 1eleq2s 2706 . . . 4 (𝑘𝑍 → (𝜑 → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘))))
8382impcom 445 . . 3 ((𝜑𝑘𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
84 fvco3 6185 . . . 4 ((seq𝑀( + , 𝐹):𝑍⟶ℂ ∧ 𝑘𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
8516, 84sylan 487 . . 3 ((𝜑𝑘𝑍) → ((exp ∘ seq𝑀( + , 𝐹))‘𝑘) = (exp‘(seq𝑀( + , 𝐹)‘𝑘)))
8683, 85eqtr4d 2647 . 2 ((𝜑𝑘𝑍) → (seq𝑀( · , (exp ∘ 𝐹))‘𝑘) = ((exp ∘ seq𝑀( + , 𝐹))‘𝑘))
8712, 18, 86eqfnfvd 6222 1 (𝜑 → seq𝑀( · , (exp ∘ 𝐹)) = (exp ∘ seq𝑀( + , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cz 11254  cuz 11563  seqcseq 12663  expce 14631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637
This theorem is referenced by:  iprodefisum  30880
  Copyright terms: Public domain W3C validator