MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem4 Structured version   Visualization version   GIF version

Theorem ipasslem4 27073
Description: Lemma for ipassi 27080. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem4
StepHypRef Expression
1 nnrecre 10934 . . . . 5 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
21recnd 9947 . . . 4 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 27055 . . . . 5 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
6 ip1i.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 26865 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
84, 7mp3an1 1403 . . . 4 (((1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
92, 8sylan 487 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁)𝑆𝐴) ∈ 𝑋)
10 ipasslem1.b . . . 4 𝐵𝑋
11 ip1i.7 . . . . 5 𝑃 = (·𝑖OLD𝑈)
125, 11dipcl 26951 . . . 4 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
134, 10, 12mp3an13 1407 . . 3 (((1 / 𝑁)𝑆𝐴) ∈ 𝑋 → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
149, 13syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) ∈ ℂ)
155, 11dipcl 26951 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
164, 10, 15mp3an13 1407 . . 3 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
17 mulcl 9899 . . 3 (((1 / 𝑁) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
182, 16, 17syl2an 493 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((1 / 𝑁) · (𝐴𝑃𝐵)) ∈ ℂ)
19 nncn 10905 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2019adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℂ)
21 nnne0 10930 . . 3 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2221adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ≠ 0)
2319, 21recidd 10675 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 · (1 / 𝑁)) = 1)
2423oveq1d 6564 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (1 · (𝐴𝑃𝐵)))
2516mulid2d 9937 . . . . 5 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2624, 25sylan9eq 2664 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2723oveq1d 6564 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (1𝑆𝐴))
285, 6nvsid 26866 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
294, 28mpan 702 . . . . . . 7 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
3027, 29sylan9eq 2664 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = 𝐴)
312adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (1 / 𝑁) ∈ ℂ)
32 simpr 476 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴𝑋)
335, 6nvsass 26867 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
344, 33mpan 702 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (1 / 𝑁) ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3520, 31, 32, 34syl3anc 1318 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁))𝑆𝐴) = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3630, 35eqtr3d 2646 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝐴 = (𝑁𝑆((1 / 𝑁)𝑆𝐴)))
3736oveq1d 6564 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) = ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵))
38 nnnn0 11176 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3938adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → 𝑁 ∈ ℕ0)
40 ip1i.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
415, 40, 6, 11, 3, 10ipasslem1 27070 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((1 / 𝑁)𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4239, 9, 41syl2anc 691 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁𝑆((1 / 𝑁)𝑆𝐴))𝑃𝐵) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4326, 37, 423eqtrd 2648 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)))
4416adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
4520, 31, 44mulassd 9942 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → ((𝑁 · (1 / 𝑁)) · (𝐴𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4643, 45eqtr3d 2646 . 2 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (𝑁 · (((1 / 𝑁)𝑆𝐴)𝑃𝐵)) = (𝑁 · ((1 / 𝑁) · (𝐴𝑃𝐵))))
4714, 18, 20, 22, 46mulcanad 10541 1 ((𝑁 ∈ ℕ ∧ 𝐴𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   · cmul 9820   / cdiv 10563  cn 10897  0cn0 11169  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  ·𝑖OLDcdip 26939  CPreHilOLDccphlo 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-dip 26940  df-ph 27052
This theorem is referenced by:  ipasslem5  27074
  Copyright terms: Public domain W3C validator