Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotasbc2 Structured version   Visualization version   GIF version

Theorem iotasbc2 37643
Description: Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotasbc2 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥,𝑦,𝑧)

Proof of Theorem iotasbc2
StepHypRef Expression
1 iotasbc 37642 . 2 (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒)))
2 iotasbc 37642 . . . . 5 (∃!𝑥𝜓 → ([(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑧(∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
32anbi2d 736 . . . 4 (∃!𝑥𝜓 → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒))))
4 3anass 1035 . . . . . 6 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ (∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
54exbii 1764 . . . . 5 (∃𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒) ↔ ∃𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ (∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
6 19.42v 1905 . . . . 5 (∃𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ (∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)) ↔ (∀𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
75, 6bitr2i 264 . . . 4 ((∀𝑥(𝜑𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)) ↔ ∃𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒))
83, 7syl6bb 275 . . 3 (∃!𝑥𝜓 → ((∀𝑥(𝜑𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
98exbidv 1837 . 2 (∃!𝑥𝜓 → (∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑦𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
101, 9sylan9bb 732 1 ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wal 1473  wex 1695  ∃!weu 2458  [wsbc 3402  cio 5766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-v 3175  df-sbc 3403  df-un 3545  df-sn 4126  df-pr 4128  df-uni 4373  df-iota 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator