Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioossioobi Structured version   Visualization version   GIF version

Theorem ioossioobi 38590
Description: Biconditional form of ioossioo 12136. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ioossioobi.a (𝜑𝐴 ∈ ℝ*)
ioossioobi.b (𝜑𝐵 ∈ ℝ*)
ioossioobi.c (𝜑𝐶 ∈ ℝ*)
ioossioobi.d (𝜑𝐷 ∈ ℝ*)
ioossioobi.cltd (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
ioossioobi (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴𝐶𝐷𝐵)))

Proof of Theorem ioossioobi
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
2 df-ioo 12050 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
32ixxssxr 12058 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ*
4 infxrss 12040 . . . . 5 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) → inf((𝐴(,)𝐵), ℝ*, < ) ≤ inf((𝐶(,)𝐷), ℝ*, < ))
51, 3, 4sylancl 693 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) ≤ inf((𝐶(,)𝐷), ℝ*, < ))
6 ioossioobi.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8 ioossioobi.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
98adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
10 ioossioobi.cltd . . . . . . . 8 (𝜑𝐶 < 𝐷)
11 ioossioobi.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
12 ioossioobi.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ*)
13 ioon0 12072 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷))
1411, 12, 13syl2anc 691 . . . . . . . 8 (𝜑 → ((𝐶(,)𝐷) ≠ ∅ ↔ 𝐶 < 𝐷))
1510, 14mpbird 246 . . . . . . 7 (𝜑 → (𝐶(,)𝐷) ≠ ∅)
1615adantr 480 . . . . . 6 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐶(,)𝐷) ≠ ∅)
17 ssn0 3928 . . . . . 6 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐶(,)𝐷) ≠ ∅) → (𝐴(,)𝐵) ≠ ∅)
181, 16, 17syl2anc 691 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅)
19 idd 24 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤 < 𝐵))
20 xrltle 11858 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝐵))
21 idd 24 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴 < 𝑤))
22 xrltle 11858 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
232, 19, 20, 21, 22ixxlb 12068 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
247, 9, 18, 23syl3anc 1318 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐴(,)𝐵), ℝ*, < ) = 𝐴)
2511adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ*)
2612adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ*)
27 idd 24 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑤 < 𝐷𝑤 < 𝐷))
28 xrltle 11858 . . . . . 6 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑤 < 𝐷𝑤𝐷))
29 idd 24 . . . . . 6 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶 < 𝑤𝐶 < 𝑤))
30 xrltle 11858 . . . . . 6 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶 < 𝑤𝐶𝑤))
312, 27, 28, 29, 30ixxlb 12068 . . . . 5 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶)
3225, 26, 16, 31syl3anc 1318 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → inf((𝐶(,)𝐷), ℝ*, < ) = 𝐶)
335, 24, 323brtr3d 4614 . . 3 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐴𝐶)
34 supxrss 12034 . . . . 5 (((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ*) → sup((𝐶(,)𝐷), ℝ*, < ) ≤ sup((𝐴(,)𝐵), ℝ*, < ))
351, 3, 34sylancl 693 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) ≤ sup((𝐴(,)𝐵), ℝ*, < ))
362, 27, 28, 29, 30ixxub 12067 . . . . 5 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐶(,)𝐷) ≠ ∅) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷)
3725, 26, 16, 36syl3anc 1318 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐶(,)𝐷), ℝ*, < ) = 𝐷)
382, 19, 20, 21, 22ixxub 12067 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴(,)𝐵) ≠ ∅) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
397, 9, 18, 38syl3anc 1318 . . . 4 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → sup((𝐴(,)𝐵), ℝ*, < ) = 𝐵)
4035, 37, 393brtr3d 4614 . . 3 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → 𝐷𝐵)
4133, 40jca 553 . 2 ((𝜑 ∧ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) → (𝐴𝐶𝐷𝐵))
426adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐴 ∈ ℝ*)
438adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐵 ∈ ℝ*)
44 simprl 790 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐴𝐶)
45 simprr 792 . . 3 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → 𝐷𝐵)
46 ioossioo 12136 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4742, 43, 44, 45, 46syl22anc 1319 . 2 ((𝜑 ∧ (𝐴𝐶𝐷𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
4841, 47impbida 873 1 (𝜑 → ((𝐶(,)𝐷) ⊆ (𝐴(,)𝐵) ↔ (𝐴𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wss 3540  c0 3874   class class class wbr 4583  (class class class)co 6549  supcsup 8229  infcinf 8230  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050
This theorem is referenced by:  fourierdlem50  39049
  Copyright terms: Public domain W3C validator