MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorinv Structured version   Visualization version   GIF version

Theorem ioorinv 23150
Description: The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.)
Hypothesis
Ref Expression
ioorf.1 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
Assertion
Ref Expression
ioorinv (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ioorinv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12142 . . . 4 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 5958 . . . 4 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 6708 . . . 4 ((,) Fn (ℝ* × ℝ*) → (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏)))
41, 2, 3mp2b 10 . . 3 (𝐴 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏))
5 ioorf.1 . . . . . . . . 9 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, ⟨0, 0⟩, ⟨inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )⟩))
65ioorinv2 23149 . . . . . . . 8 ((𝑎(,)𝑏) ≠ ∅ → (𝐹‘(𝑎(,)𝑏)) = ⟨𝑎, 𝑏⟩)
76fveq2d 6107 . . . . . . 7 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = ((,)‘⟨𝑎, 𝑏⟩))
8 df-ov 6552 . . . . . . 7 (𝑎(,)𝑏) = ((,)‘⟨𝑎, 𝑏⟩)
97, 8syl6eqr 2662 . . . . . 6 ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))
10 df-ne 2782 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
11 neeq1 2844 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → (𝐴 ≠ ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
1210, 11syl5bbr 273 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ ↔ (𝑎(,)𝑏) ≠ ∅))
13 fveq2 6103 . . . . . . . . 9 (𝐴 = (𝑎(,)𝑏) → (𝐹𝐴) = (𝐹‘(𝑎(,)𝑏)))
1413fveq2d 6107 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(𝑎(,)𝑏))))
15 id 22 . . . . . . . 8 (𝐴 = (𝑎(,)𝑏) → 𝐴 = (𝑎(,)𝑏))
1614, 15eqeq12d 2625 . . . . . . 7 (𝐴 = (𝑎(,)𝑏) → (((,)‘(𝐹𝐴)) = 𝐴 ↔ ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏)))
1712, 16imbi12d 333 . . . . . 6 (𝐴 = (𝑎(,)𝑏) → ((¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴) ↔ ((𝑎(,)𝑏) ≠ ∅ → ((,)‘(𝐹‘(𝑎(,)𝑏))) = (𝑎(,)𝑏))))
189, 17mpbiri 247 . . . . 5 (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
1918a1i 11 . . . 4 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)))
2019rexlimivv 3018 . . 3 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝐴 = (𝑎(,)𝑏) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
214, 20sylbi 206 . 2 (𝐴 ∈ ran (,) → (¬ 𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴))
22 ioorebas 12146 . . . . . . 7 (0(,)0) ∈ ran (,)
235ioorval 23148 . . . . . . 7 ((0(,)0) ∈ ran (,) → (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩))
2422, 23ax-mp 5 . . . . . 6 (𝐹‘(0(,)0)) = if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩)
25 iooid 12074 . . . . . . 7 (0(,)0) = ∅
2625iftruei 4043 . . . . . 6 if((0(,)0) = ∅, ⟨0, 0⟩, ⟨inf((0(,)0), ℝ*, < ), sup((0(,)0), ℝ*, < )⟩) = ⟨0, 0⟩
2724, 26eqtri 2632 . . . . 5 (𝐹‘(0(,)0)) = ⟨0, 0⟩
2827fveq2i 6106 . . . 4 ((,)‘(𝐹‘(0(,)0))) = ((,)‘⟨0, 0⟩)
29 df-ov 6552 . . . 4 (0(,)0) = ((,)‘⟨0, 0⟩)
3028, 29eqtr4i 2635 . . 3 ((,)‘(𝐹‘(0(,)0))) = (0(,)0)
3125eqeq2i 2622 . . . . . 6 (𝐴 = (0(,)0) ↔ 𝐴 = ∅)
3231biimpri 217 . . . . 5 (𝐴 = ∅ → 𝐴 = (0(,)0))
3332fveq2d 6107 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘(0(,)0)))
3433fveq2d 6107 . . 3 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = ((,)‘(𝐹‘(0(,)0))))
3530, 34, 323eqtr4a 2670 . 2 (𝐴 = ∅ → ((,)‘(𝐹𝐴)) = 𝐴)
3621, 35pm2.61d2 171 1 (𝐴 ∈ ran (,) → ((,)‘(𝐹𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  c0 3874  ifcif 4036  𝒫 cpw 4108  cop 4131  cmpt 4643   × cxp 5036  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  infcinf 8230  cr 9814  0cc0 9815  *cxr 9952   < clt 9953  (,)cioo 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050
This theorem is referenced by:  uniioombllem2  23157
  Copyright terms: Public domain W3C validator