Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinioc Structured version   Visualization version   GIF version

Theorem iooiinioc 38630
 Description: A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
iooiinioc.1 (𝜑𝐴 ∈ ℝ*)
iooiinioc.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinioc (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinioc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinioc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21adantr 480 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
3 iooiinioc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
54rexrd 9968 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ*)
6 1nn 10908 . . . . . . . . . 10 1 ∈ ℕ
7 ioossre 12106 . . . . . . . . . 10 (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ
8 oveq2 6557 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
98oveq2d 6565 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
109oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,)(𝐵 + (1 / 1))))
1110sseq1d 3595 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3282 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
136, 7, 12mp2an 704 . . . . . . . . 9 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 4507 . . . . . . . . 9 (∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . . 8 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 476 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 3569 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
1918rexrd 9968 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
20 1red 9934 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
21 ax-1ne0 9884 . . . . . . . . . . 11 1 ≠ 0
2221a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
2320, 20, 22redivcld 10732 . . . . . . . . 9 (𝜑 → (1 / 1) ∈ ℝ)
243, 23readdcld 9948 . . . . . . . 8 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ)
2524rexrd 9968 . . . . . . 7 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ*)
2625adantr 480 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝐵 + (1 / 1)) ∈ ℝ*)
27 id 22 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
286a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 1 ∈ ℕ)
2910eleq2d 2673 . . . . . . . 8 (𝑛 = 1 → (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))))
3027, 28, 29eliind 38266 . . . . . . 7 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
3130adantl 481 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
32 ioogtlb 38564 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 1)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))) → 𝐴 < 𝑥)
332, 26, 31, 32syl3anc 1318 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 < 𝑥)
34 nfv 1830 . . . . . . . 8 𝑛𝜑
35 nfcv 2751 . . . . . . . . 9 𝑛𝑥
36 nfii1 4487 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3735, 36nfel 2763 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3834, 37nfan 1816 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
39 simpll 786 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
40 iinss2 4508 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
4140adantl 481 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
42 simpl 472 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
4341, 42sseldd 3569 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
4443adantll 746 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
45 simpr 476 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 elioore 12076 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
4746adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
4847adantll 746 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
493adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
50 nnrecre 10934 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5150adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5249, 51readdcld 9948 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5352adantlr 747 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
541adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5554adantlr 747 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5652rexrd 9968 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
5756adantlr 747 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
58 simplr 788 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
59 iooltub 38582 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6055, 57, 58, 59syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6148, 53, 60ltled 10064 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6239, 44, 45, 61syl21anc 1317 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6362ex 449 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6438, 63ralrimi 2940 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6538, 19, 4xrralrecnnle 38543 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6664, 65mpbird 246 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
672, 5, 19, 33, 66eliocd 38577 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,]𝐵))
6867ralrimiva 2949 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
69 dfss3 3558 . . 3 ( 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
7068, 69sylibr 223 . 2 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵))
711xrleidd 38551 . . . . . 6 (𝜑𝐴𝐴)
7271adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐴)
73 1rp 11712 . . . . . . . . 9 1 ∈ ℝ+
7473a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
75 nnrp 11718 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7674, 75rpdivcld 11765 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7776adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7849, 77ltaddrpd 11781 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
79 iocssioo 12134 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8054, 56, 72, 78, 79syl22anc 1319 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8180ralrimiva 2949 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
82 ssiin 4506 . . 3 ((𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8381, 82sylibr 223 . 2 (𝜑 → (𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
8470, 83eqssd 3585 1 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ∩ ciin 4456   class class class wbr 4583  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   / cdiv 10563  ℕcn 10897  ℝ+crp 11708  (,)cioo 12046  (,]cioc 12047 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ioc 12051  df-fl 12455 This theorem is referenced by:  iocborel  39250
 Copyright terms: Public domain W3C validator