Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invfval | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
invfval | ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . 3 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.s | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | 1, 2, 3, 4, 4, 5 | invffval 16241 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
7 | simprl 790 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
8 | simprr 792 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
9 | 7, 8 | oveq12d 6567 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝑆𝑦) = (𝑋𝑆𝑌)) |
10 | 8, 7 | oveq12d 6567 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦𝑆𝑥) = (𝑌𝑆𝑋)) |
11 | 10 | cnveqd 5220 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ◡(𝑦𝑆𝑥) = ◡(𝑌𝑆𝑋)) |
12 | 9, 11 | ineq12d 3777 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
13 | invfval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
14 | ovex 6577 | . . . 4 ⊢ (𝑋𝑆𝑌) ∈ V | |
15 | 14 | inex1 4727 | . . 3 ⊢ ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋)) ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋)) ∈ V) |
17 | 6, 12, 4, 13, 16 | ovmpt2d 6686 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∩ cin 3539 ◡ccnv 5037 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 Catccat 16148 Sectcsect 16227 Invcinv 16228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-inv 16231 |
This theorem is referenced by: isinv 16243 invss 16244 dfiso2 16255 oppcinv 16263 |
Copyright terms: Public domain | W3C validator |