MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invffval Structured version   Visualization version   GIF version

Theorem invffval 16241
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
invffval (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐶,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem invffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 invfval.n . 2 𝑁 = (Inv‘𝐶)
2 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6103 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 invfval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4syl6eqr 2662 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6103 . . . . . . . 8 (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶))
7 invfval.s . . . . . . . 8 𝑆 = (Sect‘𝐶)
86, 7syl6eqr 2662 . . . . . . 7 (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆)
98oveqd 6566 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦))
108oveqd 6566 . . . . . . 7 (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
1110cnveqd 5220 . . . . . 6 (𝑐 = 𝐶(𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
129, 11ineq12d 3777 . . . . 5 (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥)))
135, 5, 12mpt2eq123dv 6615 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
14 df-inv 16231 . . . 4 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
15 fvex 6113 . . . . . 6 (Base‘𝐶) ∈ V
164, 15eqeltri 2684 . . . . 5 𝐵 ∈ V
1716, 16mpt2ex 7136 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))) ∈ V
1813, 14, 17fvmpt 6191 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
192, 18syl 17 . 2 (𝜑 → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
201, 19syl5eq 2656 1 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  ccnv 5037  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  Catccat 16148  Sectcsect 16227  Invcinv 16228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-inv 16231
This theorem is referenced by:  invfval  16242  isoval  16248
  Copyright terms: Public domain W3C validator