Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intop Structured version   Visualization version   GIF version

Theorem intop 41629
Description: An internal (binary) operation for a set. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
intop ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)

Proof of Theorem intop
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-intop 41625 . . 3 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛𝑚 (𝑚 × 𝑚)))
21elmpt2cl 6774 . 2 ( ∈ (𝑀 intOp 𝑁) → (𝑀 ∈ V ∧ 𝑁 ∈ V))
3 intopval 41628 . . . 4 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀 intOp 𝑁) = (𝑁𝑚 (𝑀 × 𝑀)))
43eleq2d 2673 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) ↔ ∈ (𝑁𝑚 (𝑀 × 𝑀))))
5 elmapi 7765 . . 3 ( ∈ (𝑁𝑚 (𝑀 × 𝑀)) → :(𝑀 × 𝑀)⟶𝑁)
64, 5syl6bi 242 . 2 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁))
72, 6mpcom 37 1 ( ∈ (𝑀 intOp 𝑁) → :(𝑀 × 𝑀)⟶𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  Vcvv 3173   × cxp 5036  wf 5800  (class class class)co 6549  𝑚 cmap 7744   intOp cintop 41622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-intop 41625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator