Proof of Theorem intnatN
Step | Hyp | Ref
| Expression |
1 | | hlatl 33665 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
2 | 1 | 3ad2ant1 1075 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ AtLat) |
3 | 2 | ad2antrr 758 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ AtLat) |
4 | | eqid 2610 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
5 | | intnat.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atn0 33613 |
. . . . 5
⊢ ((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑋 ∧ 𝑌) ≠ (0.‘𝐾)) |
7 | 3, 6 | sylancom 698 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑋 ∧ 𝑌) ≠ (0.‘𝐾)) |
8 | 7 | ex 449 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∈ 𝐴 → (𝑋 ∧ 𝑌) ≠ (0.‘𝐾))) |
9 | | simpll1 1093 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝐾 ∈ HL) |
10 | | hllat 33668 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝐾 ∈ Lat) |
12 | | simpll2 1094 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
13 | | simpll3 1095 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
14 | | intnat.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
15 | | intnat.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
16 | 14, 15 | latmcom 16898 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
17 | 11, 12, 13, 16 | syl3anc 1318 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
18 | | simplr 788 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → ¬ 𝑌 ≤ 𝑋) |
19 | 9, 1 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝐾 ∈ AtLat) |
20 | | simpr 476 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐴) |
21 | | intnat.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
22 | 14, 21, 15, 4, 5 | atnle 33622 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ (𝑌 ∧ 𝑋) = (0.‘𝐾))) |
23 | 19, 20, 12, 22 | syl3anc 1318 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (¬ 𝑌 ≤ 𝑋 ↔ (𝑌 ∧ 𝑋) = (0.‘𝐾))) |
24 | 18, 23 | mpbid 221 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∧ 𝑋) = (0.‘𝐾)) |
25 | 17, 24 | eqtrd 2644 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (𝑋 ∧ 𝑌) = (0.‘𝐾)) |
26 | 25 | ex 449 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → (𝑌 ∈ 𝐴 → (𝑋 ∧ 𝑌) = (0.‘𝐾))) |
27 | 26 | necon3ad 2795 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ≠ (0.‘𝐾) → ¬ 𝑌 ∈ 𝐴)) |
28 | 8, 27 | syld 46 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∈ 𝐴 → ¬ 𝑌 ∈ 𝐴)) |
29 | 28 | impr 647 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑌 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴)) → ¬ 𝑌 ∈ 𝐴) |