Proof of Theorem initoeu2lem1
Step | Hyp | Ref
| Expression |
1 | | eusn 4209 |
. . . 4
⊢
(∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ↔ ∃𝑓(𝐴𝐻𝐷) = {𝑓}) |
2 | | initoeu2lem.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (Base‘𝐶) |
3 | | eqid 2610 |
. . . . . . . . . . . 12
⊢
(Inv‘𝐶) =
(Inv‘𝐶) |
4 | | initoeu1.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ Cat) |
5 | 4 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐶 ∈ Cat) |
6 | | simpr2 1061 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
7 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐵 ∈ 𝑋) |
8 | | simpr1 1060 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
9 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐴 ∈ 𝑋) |
10 | | initoeu2lem.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (Iso‘𝐶) |
11 | 2, 3, 5, 7, 9, 10 | invf 16251 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐵(Inv‘𝐶)𝐴):(𝐵𝐼𝐴)⟶(𝐴𝐼𝐵)) |
12 | | simpr 476 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → 𝐾 ∈ (𝐵𝐼𝐴)) |
13 | 11, 12 | ffvelrnd 6268 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) |
14 | | initoeu2lem.h |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (Hom ‘𝐶) |
15 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐶 ∈ Cat) |
16 | 2, 14, 10, 15, 8, 6 | isohom 16259 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵)) |
17 | 16 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → (𝐴𝐼𝐵) ⊆ (𝐴𝐻𝐵)) |
18 | 17 | sselda 3568 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) |
19 | | initoeu2lem.o |
. . . . . . . . . . . . . . . . . 18
⊢ ⚬ =
(comp‘𝐶) |
20 | 15 | ad4antr 764 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat) |
21 | 8 | ad4antr 764 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐴 ∈ 𝑋) |
22 | 6 | ad4antr 764 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐵 ∈ 𝑋) |
23 | | simpr3 1062 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐷 ∈ 𝑋) |
24 | 23 | ad4antr 764 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐷 ∈ 𝑋) |
25 | | simplr 788 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) |
26 | | simpr 476 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵𝐻𝐷)) |
27 | 2, 14, 19, 20, 21, 22, 24, 25, 26 | catcocl 16169 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷)) |
28 | 15 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐶 ∈ Cat) |
29 | 8 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐴 ∈ 𝑋) |
30 | 6 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐵 ∈ 𝑋) |
31 | 23 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → 𝐷 ∈ 𝑋) |
32 | | simplr 788 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) |
33 | | simpr 476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) |
34 | 2, 14, 19, 28, 29, 30, 31, 32, 33 | catcocl 16169 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷)) |
35 | 34 | exp31 628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷)))) |
36 | 35 | ad2antrr 758 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷)))) |
37 | 36 | imp 444 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷))) |
38 | | eleq2 2677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴𝐻𝐷) = {𝑓} → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓})) |
39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓})) |
40 | | ovex 6577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V |
41 | | elsng 4139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓)) |
42 | 40, 41 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓)) |
43 | 39, 42 | bitrd 267 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓)) |
44 | | eleq2 2677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓})) |
45 | | ovex 6577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V |
46 | | elsng 4139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ V → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓)) |
47 | 45, 46 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ {𝑓} ↔ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓)) |
48 | 44, 47 | bitrd 267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓)) |
49 | 48 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) ↔ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓)) |
50 | | eqeq2 2621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))) |
51 | 50 | eqcoms 2618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))) |
52 | 51 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 ↔ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))) |
53 | | simp-4l 802 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) |
54 | | simp-4r 803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐾 ∈ (𝐵𝐼𝐴)) |
55 | | simprr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐹 ∈ (𝐴𝐻𝐷)) |
56 | | simprl 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 ∈ (𝐵𝐻𝐷)) |
57 | | simplr 788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) |
58 | | initoeu1.a |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) |
59 | 4, 58, 2, 14, 10, 19 | initoeu2lem0 16486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)) |
60 | 53, 54, 55, 56, 57, 59 | syl131anc 1331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) ∧ (𝐺 ∈ (𝐵𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)) |
61 | 60 | exp43 638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))) |
62 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))) |
63 | 52, 62 | sylbid 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))) |
64 | 63 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
66 | 49, 65 | sylbid 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
67 | 66 | com23 84 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = 𝑓 → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
68 | 43, 67 | sylbid 229 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
69 | 68 | com23 84 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ (𝐴𝐻𝐷) = {𝑓}) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
70 | 69 | ex 449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))))) |
71 | 70 | com24 93 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))))) |
72 | 71 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))))) |
73 | 37, 72 | syld 46 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → (𝐺 ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))))) |
74 | 73 | com25 97 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))))) |
75 | 74 | imp 444 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) ∈ (𝐴𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
76 | 27, 75 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))) |
77 | 76 | ex 449 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐻𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
78 | 18, 77 | mpdan 699 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (𝐹 ∈ (𝐴𝐻𝐷) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
79 | 78 | com15 99 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐴𝐻𝐷) → (𝐺 ∈ (𝐵𝐻𝐷) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))))) |
80 | 79 | imp 444 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝐴𝐻𝐷) = {𝑓} → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))))) |
81 | 80 | impcom 445 |
. . . . . . . . . . 11
⊢ (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))) |
82 | 81 | com13 86 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) ∧ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) ∈ (𝐴𝐼𝐵)) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))) |
83 | 13, 82 | mpdan 699 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ 𝐾 ∈ (𝐵𝐼𝐴)) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))) |
84 | 83 | expimpd 627 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷)) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))) |
85 | 84 | 3impia 1253 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))) |
86 | 85 | com12 32 |
. . . . . 6
⊢ (((𝐴𝐻𝐷) = {𝑓} ∧ (𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))) |
87 | 86 | ex 449 |
. . . . 5
⊢ ((𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))) |
88 | 87 | exlimiv 1845 |
. . . 4
⊢
(∃𝑓(𝐴𝐻𝐷) = {𝑓} → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))) |
89 | 1, 88 | sylbi 206 |
. . 3
⊢
(∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) → ((𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)))) |
90 | 89 | 3impib 1254 |
. 2
⊢
((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))) |
91 | 90 | com12 32 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵𝐻𝐷))) → ((∃!𝑓 𝑓 ∈ (𝐴𝐻𝐷) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))) |